SUPPLEMENTARY SUPPORTING INFORMATION

Effective Discrimination of GTP from ATP by a Cationic Tentacle Porphyrin through “Turn-On” Fluorescence Intensity

Suneesh C. Karunakaran,a Albish K. Paula and Danaboyina Ramaiaha,b*

aPhotosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India

bCSIR-North East Institute of Science and Technology, Jorhat - 785 006, Assam, India

E-mail: rama@niist.res.in, d.ramaiah@gmail.com

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014
EXPERIMENTAL SECTION

General experimental techniques. The equipment and procedures for melting point determination and spectral recordings have been described elsewhere.1,2 1H and 13C NMR spectra were measured on a 300 or 500 MHz Bruker advanced DPX spectrometer. The electronic absorption spectra were recorded on a Shimadzu UV-VIS-NIR spectrophotometer. Fluorescence spectra were recorded on a SPEX-Fluorolog F112X spectrofluorimeter. MALDI-TOF MS analysis was performed with a Shimadzu Biotech Axima CFRplus instrument equipped with a nitrogen laser in the linear mode using 2,5-dihydroxybenzoic acid (DHB) as the matrix. Fluorescence lifetimes were measured using IBH (FluoroCube) time-correlated picosecond single photon counting (TCSPC) system. The samples were excited with a pulsed diode laser (<100 ps pulse duration) at 375 nm (NanoLED-11) with a repetition rate of 1 MHz. The detection system consisted of a microchannel plate photomultiplier (5000U-09B, Hamamatsu) with a 38.6 ps response time coupled to a monochromator (5000M) and TCSPC electronics [data station Hub including Hub-NL, NanoLED controller, and preinstalled fluorescence measurement and analysis studio (FMAS) software]. The fluorescence decay profiles were deconvoluted using IBH data station software V2.1 and minimizing the χ^2 values of the fit to 1 ± 0.1. All experiments were carried out at room temperature (25 ± 1 °C), unless otherwise mentioned.

Materials. The chemicals and reagents used in the study were purchased from SD Fine Chemicals, India; Sigma-Aldrich; U.S.A. Merck Chemicals, Germany and were used as such without further purifications. The standard Tetraphenyl porphyrin (TPP) was synthesized according to modified Lindsey’s method.3 The cationic porphyrin PyP was synthesized by the reported procedure.4

Synthesis of 5,10,15,20-tetrakis[4-(8-bromooctyloxy)phenyl]porphyrinato zinc (II). A solution of the 5,10,15,20-tetrakis[4-(8-bromooctyloxy)phenyl]porphyrin (0.14 mmol) in a mixture (1:2) of methanol and chloroform (25 mL) was stirred with zinc acetate (0.7 mmol) for 6 h at 25 °C. The completion of reaction was monitored through absorption changes using a UV-vis spectrometer. The solvent was distilled off under
reduced pressure and the residue obtained was chromatographed over silica gel using dichloromethane as the eluent to give the starting bromoporphyrin derivative.

Yield: (95%). mp > 300 °C; 1H NMR (500 MHz, CDCl$_3$, 30 °C, TMS): δ 1.469-1.541 (m, 24 H), 1.627 (s, 8 H), 1.926-1.993 (m, 16 H), 3.462 (t, 8 H, J=7 Hz), 4.222 (t, 8 H, J=6 Hz), 7.252 (d, 8 H, J=8.5 Hz), 8.113 (8 H, J=8 Hz), 8.992 (s, 8 H); 13C NMR (125 MHz, CDCl$_3$, 30 °C, TMS): δ 26.16, 28.16, 28.79, 30.33, 30.47, 34.07, 68.21, 112.57, 120.80, 131.88, 135.11, 135.40, 150.49, 158.73; MALDI-TOF-MS: m/z Calcd for C$_{79}$H$_{97}$Br$_4$N$_4$O$_4$Zn: 1551.69; Found 1553.65 (M+2)$^+$.

Synthesis of 5,10,15,20-Tetrakis[4-(8-pyridiniooctyloxy)phenyl]porphyrinato zinc(II) tetrabromide (Zn-PyP). 5,10,15,20-tetrakis[4-(8-bromo-octyloxy)phenyl]-porphyrinato zinc(II) (0.13 mmol) was dissolved in 2 mL of dry pyridine and heated at 100 °C for 8 h. Excess pyridine was removed under reduced pressure. The residue obtained was dissolved in water, filtered and the saturated solution of NH$_4$PF$_6$ was added to precipitate the PF$_6$ salt of the porphyrin derivative. The PF$_6$ salt was then dissolved in acetonitrile and a saturated solution of tetrabutylammonium bromide was added to give the complex Zn-PyP.

Yield: (60%). mp > 300 °C; 1H NMR (500 MHz, CD$_3$CN, 30 °C, TMS): (δ) 1.348 (s (broad), 24H), 1.483 (s, 8H), 1.803 (m, 8H), 1.904 (m, 8H), 4.073 (t, 8H, J=6.5 Hz), 4.387 (t, 8H, J=7.5 Hz), 7.140 (d, 8H, J=8.5 Hz), 7.929 (dd, 16H, J=6.5 Hz), 8.410 (t, 4H, (d, 8H, J=6 Hz), 8.821 (s, 8H); 13C NMR (125 MHz, CD$_3$CN, 30 °C, TMS): δ 30.83, 31.00, 33.85, 34.13, 34.37, 36.14, 67.08, 117.76, 125.65, 133.58, 140.46, 150.46, 150.92, 155.41, 164.05; MALDI-TOF-MS: m/z calcd for C$_{99}$H$_{117}$F$_{24}$N$_8$O$_4$P$_4$Zn: 2128.39; found 2130.37 (M+2)$^+$.

Calculation of K_{ass} of porphyrin nucleotide interaction. Nucleotides, nucleosides and other analyte solutions were prepared in distilled water. The binding constants of the cationic porphyrin PyP with nucleotides were calculated using Benesi-Hildebrand equation (eq. 1).

\[
\frac{1}{A_f - A_{ob}} = \frac{1}{A_f - A_{fc}} + \frac{1}{K(A_f - A_f,)[Ligand]} \tag{eq. 1}
\]
wherein, K is the equilibrium constant, \(A_f \) is the absorbance of free host, \(A_{ob} \) is the observed absorbance in the presence of various ligands and \(A_{fc} \) is the absorbance at saturation. The linear dependence of \(1/(A_f - A_{ob}) \) on the reciprocal of the ligand concentration indicates the formation of a 1:1 molecular complex between ligands and the host.

References

Figure S1. Normalized absorption and fluorescence (Inset) spectra of the pyridinium substituted cationic porphyrin PyP and its zinc complex Zn-PyP (4 μM) in water. λ_{ex}, 430 nm.

Figure S2. Changes in the (A) absorption and (B) emission spectra of the porphyrin derivative PyP (5 μM) with the successive addition of GDP in phosphate buffer (10 mM, pH 7.4). [GDP], (a) 0 and (g) 450 μM. Inset shows Benesi-Hildebrand plot for the binding of GDP with PyP. λ_{ex}, 430 nm.
Figure S3. Changes in the (A) absorption and (B) emission spectra of the cationic porphyrin PyP (5 μM) with the successive addition of GMP in phosphate buffer (10 mM, pH 7.4). [GMP], (a) 0 and (e) 450 μM. Inset shows Benesi-Hildebrand plot for the binding of GMP with PyP. λ_{ex}, 430 nm.

Figure S4. Changes in the absorption and emission (Inset) spectra of the porphyrin PyP (5 μM) with the addition of ATP in phosphate buffer (pH 7.4, 10 mM KH₂PO₄, 2 mM NaCl). [ADP], (a) 0 and (e) 450 μM. λ_{ex}, 430 nm.
Figure S5. Relative changes in the absorbance of the zinc complex Zn-PyP (5 μM) in the presence of various nucleotides.

Figure S6. The relative changes in absorbance of PyP (5 μm) with GTP (465 μM) in 10 mM phosphate buffer (10 mM, pH 7.4) containing (■) 0, (●) 20, (▲) 100 mM NaCl.
Figure S7. The relative fluorescence quenching of HPTS (4.5 μm) by the cationic porphyrin PyP (5.25 μM) in 10 mM phosphate buffer (10 mM, pH 7.4) containing (■) 0, (●) 50, (▲) 100 and (▼) 500 mM NaCl and (▲) 1M NaCl.

Figure S8. Linear plot of the fluorescence enhancement of [PyP-HPTS] upon gradual addition of GTP for the estimation of limit of detection. Data points represent the mean of more than three independent experiments.
Figure S9. Relative concentration dependent enhancement of fluorescence intensity of [PyP•HPTS] and [Zn-PyP•HPTS] complexes by various nucleotides in phosphate buffer (10 mM, pH 7.4).

Figure S10. Fluorescence decay profiles of HPTS (4.5 μM) and the complex [PyP•HPTS] in the absence and presence of GT, collected at 515 nm. [PyP] 5.25 μM. \(\lambda_{\text{ex}} \), 375 nm.