Supporting information

Rational design of mimetic peptides based on aldo-ketoreductase enzyme as asymmetric organocatalyst in aldol reactions

Saadi Bayat1,2, Bimo Ario Tejo6, Abu Bakar Salleh1,3, Emilia Abd malek1,2, Normi M. Yahaya1,4 and Mohd Basyaruddin Abdul Rahman1,2,5*

1 Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
2 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
3 Department of Biochemistry; Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
4 Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
5 Structural and Synthetic Biology Research Centre, Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
6 Center for Infectious Diseases Research Surya University, Jl. Scientia, Boulevard Blok U/7, Gading Serpong, Tangerang 15810, Banten, Indonesia

*Corresponding Author: *basya@upm.edu.my, Tel: +60389466798, +603 8943 5380

General

All chemicals were purchased and used without further purification. Recombinant Human AKR1A1 aldehyde reductase (Homo sapiens, freeze-dried CFE, in 20 mM sodium phosphate, cat.no. = Pro-E0601) was purchased from Prozomix company to employ as a control promiscuous asymmetry biocatalyst in the aldol reaction. Analytical thin layer chromatography (TLC) was performed using Merck 60 F\textsubscript{254} precoated silica gel plate (0.2 mm thickness). Flash chromatography was performed using Merck silica gel 60 (70-230 mesh). Fourier transforms infrared spectroscopy (FTIR); Perkin Elmer Spectrum 100 was used for identification of functional groups. NMR data were recorded on 700
MHz (Bruker), 500 MHz (JEOL) for 1HNMR and 127 MHz (Bruker) 100 MHz (JEOL JNM ECA) for 13C NMR spectrometer. The relative and absolute configurations (dr) of the Aldol reactions were determined by comparison with 1H NMR spectroscopic analysis. Mass spectra (MS) were measured with a spectrometer (DIMS QP5050A SHIMADZU). Optical rotations were measured on a JASCO P-2000 Polarimeter. Enantioselectivity were determined by HPLC (Waters 1525 Binary Pump and UV-Water 2489) analysis employing a Daicel ChiralCel OD-H, and ChiralPak AD-H columns (4.6mm×250mm). CD spectra were measured on a JASCO J-810 automatic recording spectropolarimeter.

- Experimental method

Characterizations of peptide 8aa

IR (neat) $\nu = 3280, 3103, 2966, 2902, 1635, 1546, 1195, 1139, \text{cm}^{-1}$; **1HNMR** (700 MHz, $\delta = \text{ppm}$); $\delta = 8.71$ (d, $J = 7.09$ Hz, 1H), 8.6 (s, 2H), 8.48 (d, $J = 8.17$, 1H), 8.33 (d, $J = 7.0$ Hz, 1H), 8.19 (d, $J = 7.45$ Hz, 1H), 8.28 (d, $J = 7.19$ Hz, 1H), 8.26 (d, $J = 6.84$ Hz, 1H), 7.97 (d, $J = 7.89$ Hz, 1H), 7.53 (bs, 1H), 7.33 (m, 3H), 7.29 (m, 2H), 7.23 (d, $J = 7.70$ Hz, 3H), 7.18 (s, 1H), 4.63 (m, 2H), 4.40 (t, $J = 7.14$ Hz, 1H), 4.33 (m, 2H), 4.25 (m, 3H), 4.02 (t, $J = 7.50$ Hz, 1H), 3.04 (m, 2H), 3.28 (dd, $J = 15.48$, 5.78 Hz, 1H), 3.16 (dd, $J = 15.50$, 8.90 Hz, 1H), 3.09 (dd, $J = 14.16$, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m,
2H), 2.39 (m, 2H), 2.34 (m, 2H), 1.99 (m, 6H), 1.79 (m, 1H), 1.70 (m, 3H), 1.58 (m, 1H), 1.5 (m, 2H), 1.45 (m, 2H), 0.89 (d, J = 5.00 Hz, 12 H), 0.83 (d, J = 6.23 Hz, 6H). 13CNMR (125.70 MHz, D$_2$O, 25°C) δ = 20.52, 20.96, 23.27, 23.56, 24.60, 24.70, 24.79, 26.36, 26.85, 26.93, 28.87, 28.91, 32.50, 32.78, 34.06, 39.58, 42.11, 42.39, 42.58, 54.95, 55.25, 55.80, 56.15, 57.64, 62.09, 62.26, 118.13, 119.80, 120.04, 121.50, 129.75, 131.31, 131.35, 131.81, 136.25, 138.81, 156.50, 165.70, 167.60, 172.3, 175.14, 175.33, 176.27, 176.57, 176.67, 177.10, 179.80. MS (Accurate Q-TOF LC/HRMS): m/z (%): 981.5887 (100) [M+H].

Spectroscopic data of peptide PH16aa

IR (neat) ν = 3262, 3046, 2925, 2856, 1624, 1523, 1170, 1130, cm$^{-1}$; 1HNMR (700 MHz, δ = ppm); δ = 8.48 (s, 2H), 8.45 (s, 2H), 8.40 (d, J = 6.15 Hz, 1H), 8.38 (d, J = 6.15 Hz, 1H), 8.26 (d, J = 6.50 Hz, 1H), 8.20 (d, J = 6.50 Hz, 1H), 8.19 (d, J = 6.55 Hz, 1H), 8.15 (d, J = 7.55 Hz, 1H), 8.12 (m, 2H), 7.97 (d, J = 7.55 Hz, 1H), 7.89 (d, J = 7.29 Hz, 1H), 7.53 (bs, 1H), 7.32 (t, J = 7.15 Hz, 3H), 7.27 (d, J = 7.00 Hz, 2H), 7.26 (bs, 2H), 7.22 (m, 3H), 7.17 (bs, 1H), 4.41 (t, J = 7.06 Hz, 1H), 4.35 (m, 4H), 4.24 (m, 3H), 4.17 (dd, J = 14.75, 5.70 Hz, 1H), 4.13 (t, J = 7.50 Hz, 1H), 3.97 (m, 2H), 3.94 (d, J = 5.00 Hz, 2H), 3.89 (dd, J = 12, 5.22 Hz, 1H), 3.84 (dd, J = 11.5, 4.80 Hz, 1H), 3.68 (q, J = 9.25 Hz, 1H), 3.39 (m, 2H), 3.26 (d, J = 5.40 Hz, 1H), 3.24 (t, J = 6.54 Hz, 1H), 3.18 (dd, J = 15.00, 8.00 Hz, 1H), 3.00 (s, 3H), 2.89 (d, J = 6.98 Hz, 3H), 2.78 (d, J = 6.98 Hz, 3H), 2.17 (m, 2H), 1.84 (m, 2H), 1.78 (m, 1H), 1.62 (m, 1H), 1.37 (d, J = 6.15 Hz, 3H), 1.20 (d, J = 6.15 Hz, 3H), 1.09 (d, J = 6.15 Hz, 3H), 0.96 (s, 3H), 0.91 (s, 3H), 0.87 (s, 3H).
3.11 (m, 2H), 3.03 (dd, \(J = 13.50, 8.00 \) Hz, 1H), 2.99 (t, \(J = 7.74 \) Hz, 3H), 2.90 (t, \(J = 8.00 \) Hz, 1H), 2.43 (m, 1H), 2.58 (m, 3H), 1.99 (m, 11H), 1.79 (m, 2H), 1.69 (t, \(J = 7.55 \) Hz, 2H), 1.52 (m, 4H), 1.44 (m, 4H), 1.38 (d, \(J = 7.00 \) Hz, 7H), 1.36 (d, \(J = 7.02 \) Hz, 3H), 1.17 (m, 2H), 0.96 (d, \(J = 7.01 \) Hz, 3H), 0.91 (d, \(J = 6.86 \) Hz, 7H), 0.90 (d, \(J = 7.50 \) Hz, 5H), 0.88 (d, \(J = 6.20 \) Hz, 12H), 0.85 (d, \(J = 7.16 \) Hz, 4H), 0.82 (m, 8H).

\(^{13}\text{CNMR} \) (125.70 MHz, \(\text{D}_2\text{O}, 25^\circ\text{C} \)) \(\delta = 13.00, 17.53, 17.71, 19.18, 19.40, 20.28, 20.83, 21.05, 21.07, 21.80, 23.30, 23.67, 24.67, 24.80, 24.88, 26.89, 26.96, 27.26, 27.48, 28.89, 29.17, 32.08, 32.49, 32.86, 32.93, 33.15, 38.79, 39.45, 40.87, 42.18, 42.44, 44.95, 50.13, 50.99, 52.44, 55.44, 56.46, 57.13, 58.42, 61.00, 63.93, 118.21, 120.08, 129.87, 131.49, 131.84, 136.30, 138.86, 165.59, 172.42, 174.27, 175.84, 176.98.

\textbf{MS} \ (\text{Accurate Q-TOF LC/HRMS}): \(m/z \) (%): 1842.9947 (100) \([\text{M+H}]^+\)

\textbf{Spectroscopic data of peptide 8aa(z)}

\textbf{IR} (neat) \(\nu = 3270, 3153, 2956, 2922, 1726, 1655, 1556, 1205, 1142, \text{cm}^{-1}; \) \(^1\text{HNMR} \) (700 MHz, \(\delta = \text{ppm} \)); \(\delta = 8.75 \) (d, \(J = 7.02 \) Hz, 1H), 8.65 (s, 2H), 8.48 (d, \(J = 8.15 \) Hz, 1H), 8.35 (d, \(J = 7.02 \) Hz, 1H), 8.21 (d, \(J = 7.41 \) Hz, 1H), 8.28 (d, \(J = 7.15 \) Hz, 1H), 8.23 (d, \(J = 7.04 \) Hz, 1H), 7.93 (d, \(J = 7.81 \) Hz, 1H), 7.57 (bs, 1H), 7.32 (m, 4H), 7.29 (m, 2H), 7.23 (m, 5H), 7.16 (m, 1H), 5.06 (s, 2H), 4.63 (m, 2H), 4.41
(t, $J = 7.12$ Hz, 1H), 4.35 (m, 2H), 4.23 (m, 3H), 4.02 (t, $J = 7.52$ Hz, 1H), 3.08 (m, 2H), 3.27 (dd, $J = 15.48$, 5.78 Hz, 1H), 3.14 (dd, $J = 15.50$, 8.91 Hz, 1H), 3.10 (dd, $J = 14.12$, 6.65 Hz, 1H), 3.06 (m, 4H), 2.42 (m, 2H), 2.32 (m, 2H), 2.31 (m, 2H), 1.94 (m, 6H), 1.71 (m, 1H), 1.72 (m, 3H), 1.58 (m, 1H), 1.53 (m, 2H), 1.43 (m, 2H), 0.85 (d, $J = 5.00$ Hz, 12.00 H), 0.81 (d, $J = 6.20$ Hz, 6H).

13CNMR (125.7 MHz, CD$_3$OD, 25°C) $\delta = 18.29$, 19.78, 21.63, 22.15, 22.77, 23.55, 24.31, 24.36, 26.39, 26.65, 27.91, 28.15, 28.17, 30.62, 31.03, 31.55, 32.21, 38.18, 41.29, 41.69, 47.57, 53.59, 54.03, 54.54, 54.66, 55.86, 57.45, 61.06, 61.92, 67.44, 118.73, 128.08, 128.82, 129.09, 129.58, 129.72, 130.38, 131.39, 134.87, 138.10, 138.58, 169.99, 173.93, 174.33, 174.39, 174.90, 175.19, 176.44.

MS (Accurate Q-TOF LC/HRMS): m/z (%): 1115.6262 (100) [M+H]$^+$

Spectroscopic data of PELFV-NH$_2$ (5aa)

IR (neat) $\nu = 3342$, 3125, 3085, 2975, 2846, 1665, 1546, 1187, 1135, cm$^{-1}$; 1HNMR (700 MHz, $\delta = ppm$); $\delta = 8.74$ (s, 1H), 8.35 (d, $J = 7.01$ Hz, 1H), 8.33 (d, $J = 7.50$ Hz, 1H), 7.99 (d, $J = 8.32$ Hz, 1H), 7.35 (t, $J = 7.50$ Hz, 2H), 7.29 (t, $J = 7.92$ Hz, 1H), 7.25 (d, $J = 7.60$ Hz), 7.16 (bs, 1H), 6.90 (bs, 1H), 4.30 (m, 2H), 4.03 (t, $J = 7.78$ Hz, 2H), 3.70 (s, 1H), 3.41 (m, 3H), 3.06 (m, 3H), 3.06 (dd, $J = 13.52$, 7.50 Hz, 3H), 2.40 (m, 1H), 2.23 (m, 1H), 2.01 (m, 3H), 1.87 (m, 1H), 1.50 (m, 1H), 1.46 (m, 1H), 1.16 (dd, $J = 6.25$, 0.50 Hz, 2H), 0.89 (d, $J = 6.50$ Hz, 6H), 0.87 (d, $J = 6.72$ Hz, 3H), 0.83 (d, $J = 6.23$ Hz, 3H).

13CNMR (125.7 MHz, D$_2$O, 25°C) $\delta = 18.51$, 19.78, 22.17, 23.42, 25.00, 25.30, 25.80, 28.55, 31.07, 31.60, 32.05, 38.62, 42.31, 47.55, 52.35, 53.16, 54.46, 56.04, 59.71, 61.01, 64.81, 66.95, 127.85, 129.54, 130.43, 138.32, 169.80, 173.04, 173.24, 174.25, 174.82, 175.71, 176.71.

MS (Accurate Q-TOF LC/HRMS): m/z (%): 603.3515 (100) [M+H]$^+$
General procedure for aldol reaction catalyzed by peptide

To H$_2$O (0.6 mL) was added the corresponding catalyst (0.005 mmol, 5 mg), NMM (1 drop), and iPrOH (0.4 mL). The reaction mixture was stirred for 20 min followed by addition of the corresponding ketone (0.168 mmol, 1.2 eq). Then, the requisite aldehyde (0.14 mmol, 1 eq) was added to the reaction mixture. The resulting mixture was stirred at RT for 24 h. The reaction was monitored by TLC. Then treated with saturated ammonium chloride solution and the mixture was extracted with ethyl acetate (3×2mL). The combined organic extract was washed with brine, dried (Na$_2$SO$_4$), and concentrated in vacuo. After NMR analysis to determine diastereomeric ratio, the residue was purified by flash column chromatography with hexanes/ethyl acetate (3:1) to afford the aldol products that were subjected to chiral HPLC analysis to determine enantiomeric excesses.

1- (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 ×250mm), yield: 97%; The ee was determined by chiral HPLC (Chiral OD-H, iPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 35.488 min, tminor= 47.551 min, ee = 97%, dr = 90:10 (anti/syn).

FT-IR (cm$^{-1}$): 3510, 2938, 2901, 2875, 1686, 1603, 1507, 1339; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.26-1.35 (m, 1H), 1.44-1.65 (m, 4H), 1.77 (d, J= 13.7 Hz, 1H), 2.06-2.11 (m, 1H), 2.30-2.37 (td, J= 13.75Hz, J = 6.9 Hz, 1H), 2.54-2.62 (m, 1H), 4.83 (d, J= 8 Hz, 1H), 7.44 (d, J = 9.15 Hz, 2H), 8.15 (d, J = 9.15 Hz, 2H)
13C NMR (100 MHz, CDCl$_3$) δ = 24.62, 27.59, 30.69, 42.62, 57.12, 73.74, 123.40, 123.52, 126.56, 127.86, 147.49, 148.30, 214.78
DEPT90 and 135 deg show four methylene groups (negative) and 6 methine groups (positive) which in the aromatic area two of CH groups have been overlapped together.
MS (DI) = 249

2 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone

![Chemical Structure 1](image1.png)

FT-IR (cm$^{-1}$): 3508, 3112, 2935, 2862, 1692, 1510, 1338; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) 1.73- 1.79 (m, 3H), 1.89-1.94 (m, 3H), 2.51- 2.55 (t, J = 6.85 Hz, 2H), 2.83 (td, J = 12.2Hz, J = 5.4 Hz, 1H) - 2.91- 2.94 (m, 1H), 4.78 (d, J = 9.2 Hz, 1H), 7.4, (m, 5H)

13C NMR (100 MHz, CDCl$_3$) δ = 23.86, 28.4, 28.92, 40.29, 60.48, 74.54, 128.32, 128.47, 129.2, 130.19, 130.29, 133.78, 215.18
MS(DI) = 204

3 2-(XXXhydroxyl(4-nitrophenyl)methyl)cycloheptanone

![Chemical Structure 2](image2.png)

2-(hydroxy(4-nitrophenyl)methyl)cycloheptanone
FT-IR (cm$^{-1}$): 3100, 2928, 2860, 1704, 1603, 1346, 1117; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.20-1.45 (m, 4H), 1.65-1.92 (m, 4H), 2.40-2.59 (m, 2H), 2.98 (m, 1H), 3.74 (d, $J=4.8$ Hz, 1H), 4.92 (dd, $J=6.9$, $J=5.2$ Hz, 1H), 7.53 (d, $J=8.1$ Hz, 2H), 8.21(d, $J=9.1$Hz, 2H).

4 S-2-((S)-(2-chlorophenyl)(XXXhydroxyl)methyl)cyclohexanone

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 \times250mm), yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, tPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, $\lambda = 254$ nm): $t_{major}= 13.055$ min, $t_{minor}= 15.552$ min, ee = 99.9%, dr = 96:4 (anti/syn).

FT-IR (cm$^{-1}$): 3437, 2940, 2864, 1696, 1438, 1030, 756; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.54-1.64 (m, 5H), 1.79-1.81 (m, 1H), 2.04-2.08 (m, 1H), 2.29-2.35 (td, $J=13.75$ Hz, $J=6.85$ Hz 1H), 2.43-2.46 (m, 1H), 2.63-2.68 (m, 1H), 5.33 (d, $J=8$ Hz, 1H), 7.19 (dd, $J=8$, $J=5.7$ Hz, 1H), 7.27-7.31 (m, 2H), 7.52 (dd, $J=8$, $J=2.3$ Hz, 1H).

13C NMR (100 MHz, CDCl$_3$) $\delta = 24.89$, 27.79, 30.37, 42.71, 57.56, 70.43, 127.23, 128.20, 128.73, 129.19, 132.94, 139.02, 215.32.

DEPT90 and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 238

5 S-2-((S)-(4-chlorophenyl)(XXXhydroxyl)methyl)cyclohexanone
The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 ×250mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, iPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, $\lambda = 254$ nm): $t_{major} = 13.831$ min, $t_{minor} = 17.452$ min, ee = 96.54 %, dr = 93:7 (anti/syn).

FT-IR (cm$^{-1}$): 2828, 2663, 2552, 1678, 1418, 1284, 926; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.25-1.27 (m, 2H), 1.52-1.55 (m, 2H), 1.56-1.60 (m, 1H), 1.60-1.63 (m, 1H), 2.07-2.08 (m, 1H), 2.31-2.37 (td, $J = 13.7$ Hz, $J = 6.8$ Hz, 1H), 2.46-2.53 (m, 1H), 2.54-2.55 (m, 1H), 4.76 (d, $J = 9.15$ Hz, 1H), 7.25 (d, $J = 9.15$ Hz, 2H), 7.32 (d, $J = 9.15$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$) $\delta = 24.67$, 27.71, 30.74, 42.64, 57.30, 74.15, 128.48, 128.54, 129.26, 130.19, 133.79, 171.97, 215.44.

DEPT90 and 135deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS (DI) = 238

6 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 ×250mm), yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, iPrOH/hexane 5/95, flow rate = 0.8 mL/min, $\lambda = 254$ nm): $t_{major} = 18.801$ min, $t_{minor} = 26.323$ min, ee = 86 %, dr = 99:1 (anti/syn).

FT-IR (cm$^{-1}$): 3425, 3356, 2932, 2860, 1688, 1481, 1053, 824; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.61-1.71(m, 3H), 1.89-1.99 (m, 2H), 2.06-2.13 (m, 2H), 2.16-2.24 (m, 1H), 2.29-2.43 (m, 1H), 4.75 (d, $J = 9.15$ Hz, 1H), 5.31 (d, $J = 2.3$ Hz, 1H) 7.41 (dd, $J = 2.3$, $J = 8$ Hz, 2H), 7.58 (dd, $J = 4.6$, $J = 8$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$) $\delta = 20.25$, 22.24, 26.66, 38.94, 55.97, 74.43, 110.82, 118.71, 126.19, 127.17, 132.11, 148.30, 219.91.
DEPT90 and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 229

7 \textit{(R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone}

![Chemical structure of (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone]

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their \textit{ee}. OD-H ChiralCel Column (4.6 \times 250mm). yield: 95\%; The \textit{ee} was determined by chiral HPLC (Chiral OD-H, 1PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): \text{t}_{\text{major}}= 11.508 min, \text{t}_{\text{minor}}= 16.098 min, \textit{ee} = 88.8 \%, \text{dr} = 98: 2 (anti/syn).

FT-IR (cm$^{-1}$): 3411, 2942, 2866, 1703, 1524, 1349; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.57-1.75 (m, 5H), 1.80-1.83 (m, 1H), 2.04-2.09 (m, 1H), 2.27-2.34 (td, J = 13.75 Hz, J = 5.75 Hz, 1H), 2.40-2.43 (m, 1H), 5.42 (d, J = 6.85 Hz, 1H), 7.40 (t, J = 8 Hz, 1H), 7.60 (t, J = 8 Hz, 1H), 7.74 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H)

13C NMR (100 MHz, CDCl$_3$) δ = 24.93, 27.72, 31.06, 42.78, 57.24, 69.70, 124.04, 128.36, 128.95, 133.05, 136.54, 148.67, 214.96.

DEPT90 and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 249

8 \textit{(R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone}

![Chemical structure of (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone]
The resulting pure product was examined by \(^1\)H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 × 250 mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, iPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, \(\lambda = 254\) nm): \(t_{\text{major}} = 22.316\) min, \(t_{\text{minor}} = 29.783\) min, ee = 85.8 %, dr = 90: 10 (anti/syn).

FT-IR (cm\(^{-1}\)): 2941, 2833, 2659, 2550, 1678, 1415, 1281, 925; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) (ppm) = 1.24-1.32 (m, 1H), 1.49-1.70 (m, 4H), 1.77-1.85 (m, 1H), 2.06-2.11 (m, 1H), 2.31-2.37 (td, \(J = 13.7\) Hz, \(J = 5.7\) Hz, 1H), 2.43-2.48 (m, 1H), 2.51-2.57 (m, 1H), 4.74 (d, \(J = 9.2\) Hz, 1H), 7.19 (d, \(J = 8\) Hz, 2H), 7.46 (d, \(J = 8\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 24.68, 27.69, 30.73, 42.64, 57.29, 74.14, 121.70, 127.50, 128.71, 131.24, 131.47, 139.95, 215.30.

DEPT\(^{90}\) and \(^{135}\) deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 282

9 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

The resulting pure product was examined by \(^1\)H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column (4.6 × 250 mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, iPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, \(\lambda = 254\) nm): \(t_{\text{major}} = 13.407\) min, \(t_{\text{minor}} = 15.682\) min, ee = 79.5 %, dr = 92: 8 (anti/syn).

FT-IR (cm\(^{-1}\)): 3065, 2828, 2663, 2552, 1678, 1418, 1285, 928; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) (ppm) = 1.25-1.31 (m, 2H), 1.49-1.53 (m, 2H), 1.55-1.64 (m, 1H), 1.73-1.75 (m, 1H), 2.00-2.06 (m, 1H), 2.26-2.32 (td, \(J = 5.7\) Hz, \(J = 13.7\) Hz, 1H), 2.40-2.43 (m, 1H), 2.50-2.55 (m, 1H), 4.77 (d, \(J = 8\) Hz, 1H), 7.37 (d, \(J = 8\) Hz, 2H), 7.53 (d, \(J = 8\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 24.70, 27.69, 30.74, 42.66, 57.24, 74.26, 125.58, 125.32, 127.35, 129.94, 130.20, 144.93, 215.12.

DEPT\(^{90}\) and \(^{135}\) deg demonstrate four methylene groups (negative) and 6 methine groups (positive).
10 (R)-2-((S)-hydroxy(pyridin-4-yl)methyl)cyclohexanone

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column (4.6 ×250mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral AD-H, iPrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): t_{major}= 12.228 min, t_{minor}= 16.668 min, ee = 98 %, dr = 99:1 (anti/syn).

FT-IR (cm⁻¹): 3100, 2928, 2860, 1704, 1603, 1413, 1117; 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 1.66-1.71 (m, 2H), 1.93- 2.02 (m, 2H), 2.09-2.16 (m, 1H), 2.3- 2.40 (m, 1H), 4.38 (bs, 1H), 5.29 (d, $J = 2.3$ Hz 1H), 7.28 (d, $J = 4.55$ Hz, 2H), 7.43 (d, $J = 4.55$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$) δ (ppm) 20.38, 22.14, 39.01, 55.67, 69.50, 120.83, 129.06, 153.18, 219.51.

DEPT90 and DEPT135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive two overlapped). MS(DI) = 272

11 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column
The ee was determined by chiral HPLC (Chiral AD-H, iPrOH/n-hexane 10/90, flow rate = 0.8 mL/min, λ = 254 nm).

FT-IR (cm\(^{-1}\)): 3430, 3068, 2922, 1700, 1414, 1281. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) (ppm) = 2.14 (s, 3H), 2.78 (d, \(J = 5.7\) Hz, 2H), 3.96 (bs, 1H), 5.19 (dd, \(J = 6.9, 5.7\) Hz, 1H), 7.46 (d, \(J = 8\) Hz, 2H), 8.11 (d, \(J = 8\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) = 30.61, 51.48, 68.50, 123.66, 126.36, 128.36, 130.01, 147.4, 150.04, 208.44.

DEPT\(^{90}\) and \(^{135}\) deg demonstrate one methylene groups (negative) and five methine groups (positive).

\(12\) (S)-4-(4-chlorophenyl)-4-hydroxybutan-2-one

\begin{center}
\includegraphics[width=0.2\textwidth]{structure.png}
\end{center}

The resulting pure product was examined by \(^1\)H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column (4.6 \(\times\) 250mm). The ee was determined by chiral HPLC (Chiral AD-H, iPrOH/n-hexane 10/90, flow rate = 0.5 mL/min, λ = 254 nm).

FT-IR (cm\(^{-1}\)): 3425, 3077, 2919, 1703, 1515, 1340. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) (ppm) = 2.17 (s, 3H), 2.78 (d, \(J = 4.6\) Hz, 2H), 3.36 (bs, 1H), 5.10 (dd, \(J = 8.9, 3.7\) Hz, 1H), 7.27-7.30 (m, 4H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) = 30.74, 51.76, 69.15, 127.00, 128.65, 133.32, 141.14, 208.93.

DEPT\(^{90}\) and \(^{135}\) deg demonstrate one methylene groups (negative) and five methine groups (positive).

\(13\) (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

\begin{center}
\includegraphics[width=0.2\textwidth]{structure.png}
\end{center}

The resulting pure product was examined by \(^1\)H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column
The ee was determined by chiral HPLC (Chiral AD-H, iPrOH/n-hexane 10/90, flow rate = 1 mL/min, λ = 254 nm).

FT-IR (cm⁻¹): 3420, 3078, 2914, 1705, 1515, 1341. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.17 (s, 3H), 2.81 (d, J = 4.55 Hz, 2H), 3.54 (bs, 1H), 5.18 (dd, J = 7.4, 3.45 Hz, 1H), 7.44 (d, J = 8 Hz, 2H), 7.57 (d, J = 9.15 Hz, 2H).

¹⁳C NMR (100 MHz, CDCl₃) δ = 30.65, 51.45, 68.80, 125.45, 125.87, 129.61, 129.94, 146.94, 208.79. DEPT⁹₀ and ¹³⁵ deg demonstrate one methylene groups (negative) and five methine groups (positive).

14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one

![Formula](image)

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column (4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, iPrOH/n-hexane 5/95, flow rate = 0.5 mL/min, λ = 254 nm)

FT-IR (cm⁻¹): 3418, 3077, 2922, 1706, 1520, 1344. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.21 (s, 3H), 2.70 (dd, J = 17.7, 10.3 Hz, 2H), 3.7 (bs, 1H), 5.65 (dd, J = 9.15, 2.3 Hz, 1H), 7.41 (d, J = 8 Hz, 2H), 7.64 (t, J = 8 Hz, 1H), 7.86 (d, J = 8 Hz, 1H), 7.93 (d, J = 8 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃) δ = 30.41, 51.04, 65.57, 124.41, 128.15, 128.25, 133.80, 138.37, 147.11, 208.80.

DEPT⁹₀ and ¹³⁵ deg demonstrate one methylene groups (negative) and five methine groups (positive).

15 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one

![Formula](image)
The resulting pure product was examined by 1H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column (4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, 'PrOH/n-hexane 10/90, flow rate = 1 mL/min, $\lambda = 254$ nm).

FT-IR (cm$^{-1}$): 3418, 2921, 2855, 1705, 1490, 1352. 1H NMR (500 MHz, CDCl$_3$): δ (ppm) = 2.18 (s, 3H), 2.81 (d, $J = 4.55$ Hz, 2H), 3.69 (bs, 1H), 5.22 (dd, $J = 7.4$, 3.45 Hz, 1H), 7.49 (d, $J = 8$ Hz, 2H), 8.15(d, $J = 9.15$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$) δ = 30.65, 51.45, 68.80, 123.68, 126.36, 147.21, 150.01, 208.47. DEPT90 and DEPT135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

- **NMR spectra of corresponding aldol compounds**
HPLC of corresponding aldol compounds Catalyzed by 8aa taken by chiral column
2-(hydroxy(4-nitrophenyl)methyl)cycloheptanone

<table>
<thead>
<tr>
<th>Peak Name</th>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>syn1</td>
<td>12.838</td>
<td>11307086</td>
<td>49.90</td>
<td>59585</td>
<td>52.44</td>
</tr>
<tr>
<td>syn2</td>
<td>13.814</td>
<td>1293524</td>
<td>49.38</td>
<td>53101</td>
<td>46.73</td>
</tr>
<tr>
<td>anti1</td>
<td>15.816</td>
<td>10500</td>
<td>0.40</td>
<td>578</td>
<td>0.51</td>
</tr>
<tr>
<td>anti2</td>
<td>16.574</td>
<td>8259</td>
<td>0.32</td>
<td>363</td>
<td>0.32</td>
</tr>
</tbody>
</table>

2-(hydroxy(4-nitrophenyl)methyl)cycloheptanone

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.424</td>
<td>1458374</td>
<td>5.90</td>
<td>70124</td>
</tr>
<tr>
<td>2</td>
<td>14.354</td>
<td>23192174</td>
<td>93.80</td>
<td>846805</td>
</tr>
<tr>
<td>3</td>
<td>17.550</td>
<td>39537</td>
<td>0.16</td>
<td>1858</td>
</tr>
<tr>
<td>4</td>
<td>18.250</td>
<td>35406</td>
<td>0.14</td>
<td>1573</td>
</tr>
<tr>
<td>RT (min)</td>
<td>Area (μV·sec)</td>
<td>% Area</td>
<td>Height (μV)</td>
<td>% Height</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>10.575</td>
<td>43996</td>
<td>0.35</td>
<td>1816</td>
</tr>
<tr>
<td>2</td>
<td>13.055</td>
<td>1250304</td>
<td>99.60</td>
<td>448383</td>
</tr>
<tr>
<td>3</td>
<td>15.552</td>
<td>6606</td>
<td>0.05</td>
<td>346</td>
</tr>
</tbody>
</table>

Racemate
\[\text{(R)-2-((S)-hydroxy(4-methoxyphenyl)methyl)cyclohexanone cat. 8aa}\]
1) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.8aa(z)
2) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.5aa
3) (R)-2-((S)-hydroxy(4-nitrophosphyl)methyl)cyclohexanone catalyzed by cat.3aa
Aldol reaction Catalyzed by Fmoc-3aa-Resin
Sample Information

<table>
<thead>
<tr>
<th>Sample Name:</th>
<th>4NitroBen+acetone</th>
<th>Acquired By:</th>
<th>Breeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type:</td>
<td>Unknown</td>
<td>Date Acquired:</td>
<td>4/12/2013 11:20:31 AM MYT</td>
</tr>
<tr>
<td>Vial:</td>
<td>1</td>
<td>Acq. Method:</td>
<td>Saadi</td>
</tr>
<tr>
<td>Injection #:</td>
<td>3</td>
<td>Date Processed:</td>
<td>4/12/2013 12:08:00 PM MYT</td>
</tr>
<tr>
<td>Injection Volume:</td>
<td>0.00 ul</td>
<td>Channel Name:</td>
<td>W2489 ChA</td>
</tr>
<tr>
<td>Run Time:</td>
<td>60.00 Minutes</td>
<td>Sample Set Name:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (μV/sec)</th>
<th>% Area</th>
<th>Height (μV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.496</td>
<td>5270043</td>
<td>11.30</td>
<td>393353</td>
</tr>
<tr>
<td>2</td>
<td>7.844</td>
<td>41378871</td>
<td>88.70</td>
<td>2721868</td>
</tr>
</tbody>
</table>

![Chemical Structure Diagram]

AU

<table>
<thead>
<tr>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
</tr>
<tr>
<td>4.00</td>
</tr>
<tr>
<td>5.00</td>
</tr>
<tr>
<td>6.00</td>
</tr>
<tr>
<td>7.00</td>
</tr>
<tr>
<td>8.00</td>
</tr>
<tr>
<td>9.00</td>
</tr>
<tr>
<td>10.00</td>
</tr>
<tr>
<td>11.00</td>
</tr>
</tbody>
</table>

[Graphical Representation of the chromatogram with peaks at RT 7.496 and 7.844 minutes]
SAMPLE INFORMATION

Sample Name: 2Nitrobenz + acetone(8aa)ADH
Sample Type: Unknown
Vial: 1
Injection #: 2
Injection Volume: 0.00 ul
Run Time: 60.00 Minutes

Acquired By: Breeze
Date Acquired: 3/29/2013 10:12:32 AM MYT
Acq. Method: Saadi
Date Processed: 3/29/2013 12:25:52 PM MYT
Channel Name: W2489 ChA
Sample Set Name:

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.505</td>
<td>4757250</td>
<td>79.63</td>
<td>81144</td>
</tr>
<tr>
<td>2</td>
<td>43.206</td>
<td>1217304</td>
<td>20.37</td>
<td>19471</td>
</tr>
</tbody>
</table>

Chemical Structure:
![Chemical Structure Image]
4) **Octapeptide purity:**

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH₂

Octapeptide Mass:

\[[\alpha]^{20}_{\text{Na}589} = +2.86 \text{ (c= 5 mg/25ml H}_2\text{O)} \]

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH₂

Theory Mol. Wt. calculated by Chemoffice software:

\[C_{48}H_{76}N_{12}O_{10} \]

Exact Mass: 980.58

Mol. Wt.: 981.19

m/e: 980.58 (100.0%), 981.58 (56.7%), 982.59 (13.9%), 982.58 (4.4%), 983.59 (3.5%)
And experimental LC- Mass:

Integration Peak List

<table>
<thead>
<tr>
<th>Peak</th>
<th>Start</th>
<th>RT</th>
<th>End</th>
<th>Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.302</td>
<td>8.447</td>
<td>9.845</td>
<td>16515438</td>
<td>793998057</td>
<td>100</td>
</tr>
</tbody>
</table>

m/z	z	Abund
327.8683 | 3 | 3069294
328.0218 | 3 | 201133
328.2025 | 3 | 1918582
328.5367 | 3 | 680737
328.8709 | 3 | 168530
491.2986 | 2 | 1749495
491.8 | 2 | 1076452
492.3018 | 2 | 336858
981.5887 | 1 | 290675
982.5915 | 1 | 172135

+ESI Scan (8.399-9.604 min, 76 scans) Frag=175.0V Octapeptide-50ppm-Pos-MS-15_30.d Subtract
Backbone Amide H,
Lysine Side Chain NH2,
Phenyl group

Alpha
DMSO
-CH2-
Methy
2- Aldol reaction catalyzed by PE-16aa

1-1 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone Catalyzed by PE-16aa
(S)-2-((S)-(4-chlorophenyl)(XXXhydroxyl)methyl)cyclohexanone

Sample Information

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>4Cl-benz+Cyhex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Unknown</td>
</tr>
<tr>
<td>Vial</td>
<td>1</td>
</tr>
<tr>
<td>Injection #</td>
<td>5</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>10.00 ul</td>
</tr>
<tr>
<td>Run Time</td>
<td>50.00 Minutes</td>
</tr>
<tr>
<td>Acquired By</td>
<td>Breeze</td>
</tr>
<tr>
<td>Date Acquired</td>
<td>7/11/2012 1:48:35 PM MYT</td>
</tr>
<tr>
<td>Acq. Method</td>
<td>Saadi</td>
</tr>
<tr>
<td>Date Processed</td>
<td>7/27/2012 5:48:53 PM MYT</td>
</tr>
<tr>
<td>Channel Name</td>
<td>W2489 ChA</td>
</tr>
<tr>
<td>Sample Set Name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.565</td>
<td>77230</td>
<td>4.54</td>
<td>2420</td>
</tr>
<tr>
<td>2</td>
<td>25.327</td>
<td>1307753</td>
<td>76.90</td>
<td>32763</td>
</tr>
<tr>
<td>3</td>
<td>33.594</td>
<td>315641</td>
<td>18.56</td>
<td>5905</td>
</tr>
</tbody>
</table>

Graph showing chromatographic analysis with peaks at RT 21.565 and 33.594 minutes.
1-3 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone
1-4 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

SAMPLE INFORMATION

Sample Name: 2.NitroBenz+Cyhex
Sample Type: Unknown
Vial: 1
Injection #: 5
Injection Volume: 10.00 ul
Run Time: 50.00 Minutes

Acquired By: Breeze
Date Acquired: 9/11/2012 4:37:25 PM MYT
Acq. Method: Saadi
Date Processed: 9/12/2012 12:59:33 PM MYT
Channel Name: W2489 ChA
Sample Set Name:

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103797</td>
<td>1.67</td>
<td>4318</td>
<td>2.39</td>
</tr>
<tr>
<td>2</td>
<td>85515</td>
<td>1.38</td>
<td>3585</td>
<td>1.99</td>
</tr>
<tr>
<td>3</td>
<td>4551067</td>
<td>73.28</td>
<td>143403</td>
<td>79.42</td>
</tr>
<tr>
<td>4</td>
<td>1470441</td>
<td>23.88</td>
<td>29255</td>
<td>16.20</td>
</tr>
</tbody>
</table>

AU

Minutes
1-5 \((R)-2-((S)-(4\text{-bromophenyl})(\text{hydroxy})\text{methyl})\text{cyclohexanone}\)
1-6 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone
2 - Aldol reaction catalyzed by PH-18aa

2-1 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone

![Chemical Structure of 2-1](image)

SAMPLE INFORMATION

<table>
<thead>
<tr>
<th>Sample Name:</th>
<th>4Nitro Ben-Cyhex</th>
<th>Acquired By:</th>
<th>Breeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type:</td>
<td>Unknown</td>
<td>Date Acquired:</td>
<td>7/17/2012 2:21:18 PM MYT</td>
</tr>
<tr>
<td>Vial:</td>
<td>1</td>
<td>Acq. Method:</td>
<td>Saadi</td>
</tr>
<tr>
<td>Injection #:</td>
<td>2</td>
<td>Date Processed:</td>
<td>7/17/2012 3:15:08 PM MYT</td>
</tr>
<tr>
<td>Injection Volume:</td>
<td>10.00 ul</td>
<td>Channel Name:</td>
<td>W2489 ChA</td>
</tr>
<tr>
<td>Run Time:</td>
<td>35.00 Minutes</td>
<td>Sample Set Name:</td>
<td></td>
</tr>
</tbody>
</table>

Peak Details

<table>
<thead>
<tr>
<th>Peak Name</th>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 syn1</td>
<td>17.657</td>
<td>2533</td>
<td>0.04</td>
<td>108</td>
<td>0.07</td>
</tr>
<tr>
<td>2 syn2</td>
<td>19.322</td>
<td>294002</td>
<td>4.97</td>
<td>10038</td>
<td>6.19</td>
</tr>
<tr>
<td>3 anti1</td>
<td>22.316</td>
<td>5216769</td>
<td>88.23</td>
<td>143461</td>
<td>88.51</td>
</tr>
<tr>
<td>4 anti2</td>
<td>29.783</td>
<td>399522</td>
<td>6.76</td>
<td>8472</td>
<td>5.23</td>
</tr>
</tbody>
</table>

Chromatogram

- **syn1** - 17.657 min
- **syn2** - 19.322 min
- **anti2** - 29.783 min

Additional Notes:

- The sample set includes additional peaks that may be relevant for further analysis.
- The chromatogram shows clear separation of the peaks under the specified conditions.
2-2 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone (in 1% SDS/iPrOH)
(S)-2-((S)-(4-chlorophenyl)(XXXhydroxyl)methyl)cyclohexanone
(S)-2-((S)-(2-chlorophenyl)(hydroxyl)methyl)cyclohexanone

SAMPLE INFORMATION

Sample Name: 2-ChloroBenz-Cyclohexane (P.H-16aa)
Sample Type: Unknown
Vial: 1
Injection #: 3
Injection Volume: 10.00 ul
Run Time: 20.00 Minutes

Acquired By: Breeze
Date Acquired: 10/17/2012 2:31:46 PM MST
Acq. Method: Saadi
Date Processed: 10/17/2012 2:53:44 PM MST
Channel Name: W2489 ChB
Sample Set Name:

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (μV*sec)</th>
<th>% Area</th>
<th>Height (μV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.685</td>
<td>19742</td>
<td>0.12</td>
<td>1357</td>
</tr>
<tr>
<td>2</td>
<td>7.040</td>
<td>13837720</td>
<td>85.37</td>
<td>1001204</td>
</tr>
<tr>
<td>3</td>
<td>8.385</td>
<td>2352012</td>
<td>14.51</td>
<td>161310</td>
</tr>
</tbody>
</table>
2-5 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

SAMPLE INFORMATION

<table>
<thead>
<tr>
<th>Sample Name:</th>
<th>4CN.Ben-Cyhex(P.H-16aa,aq)</th>
<th>Acquired By:</th>
<th>Breeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type:</td>
<td>Unknown</td>
<td>Date Acquired:</td>
<td>10/12/2012 5:29:09 PM MYT</td>
</tr>
<tr>
<td>Vial:</td>
<td>1</td>
<td>Acq. Method:</td>
<td>Saadi</td>
</tr>
<tr>
<td>Injection #:</td>
<td>9</td>
<td>Date Processed:</td>
<td>10/15/2012 2:55:34 PM MYT</td>
</tr>
<tr>
<td>Injection Volume:</td>
<td>10.00 ul</td>
<td>Channel Name:</td>
<td>W2489 ChA</td>
</tr>
<tr>
<td>Run Time:</td>
<td>40.00 Minutes</td>
<td>Sample Set Name:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV×sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.608</td>
<td>0.19</td>
<td>935</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>15.348</td>
<td>0.20</td>
<td>881</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>19.815</td>
<td>89.99</td>
<td>212660</td>
<td>91.42</td>
</tr>
<tr>
<td>4</td>
<td>27.389</td>
<td>9.62</td>
<td>18131</td>
<td>7.79</td>
</tr>
</tbody>
</table>

AU

Minutes

0.00

0.02

0.12

0.24

0.40

14.608

15.348

19.815

27.389

8.889
2-6 \((R)-2-((S)\text{-hydroxy}(2\text{-nitrophenyl})methyl)cyclohexanone\)
2-7 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone

SAMPLE INFORMATION

Sample Name: 4Br.Ben-Cyhex(P.H-16aa.aq) Acquired By: Breeze
Sample Type: Unknown Date Acquired: 10/12/2012 3:29:47 PM MYT
Vial: 1 Acq. Method: Saadi
Injection #: 4 Date Processed: 10/15/2012 2:48:10 PM MYT
Injection Volume: 10.00 ul Channel Name: W2489 ChB
Run Time: 17.00 Minutes Sample Set Name:

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.851</td>
<td>0.82</td>
<td>8077</td>
<td>2.16</td>
</tr>
<tr>
<td>2</td>
<td>7.508</td>
<td>0.31</td>
<td>2474</td>
<td>0.66</td>
</tr>
<tr>
<td>3</td>
<td>12.286</td>
<td>90.89</td>
<td>332692</td>
<td>88.92</td>
</tr>
<tr>
<td>4</td>
<td>15.647</td>
<td>7.97</td>
<td>30894</td>
<td>8.26</td>
</tr>
</tbody>
</table>

AUC

Minutes

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

4.851 7.508 15.647
2-8 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone
2-9 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone
2-10 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one
2-11 \((S)-4-(4\text{-chlorophenyl})\text{-4-hydroxybutan-2-one}\)
2-12 (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

```
\begin{align*}
\text{Sample Name:} & \quad 4\text{CF3Ben+acetone} \\
\text{Sample Type:} & \quad \text{Unknown} \\
\text{Vial:} & \quad 1 \\
\text{Injection #:} & \quad 3 \\
\text{Injection Volume:} & \quad 0.00 \text{ ul} \\
\text{Run Time:} & \quad 60.00 \text{ Minutes}
\end{align*}
```

Sample Information

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area ((\mu V)sec)</th>
<th>% Area</th>
<th>Height ((\mu V))</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.844</td>
<td>215786</td>
<td>69.56</td>
<td>70.84</td>
</tr>
<tr>
<td>2</td>
<td>7.359</td>
<td>94451</td>
<td>30.44</td>
<td>29.16</td>
</tr>
</tbody>
</table>
2-13 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one
2-14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one
HPLC of peptide (PH16aa)

Sample Information

- **Sample Name:** P-H-16aa (0.5mmol/gr resin)
- **Sample Type:** Unknown
- **Vial:** 1
- **Injection #:** 4
- **Injection Volume:** 10.00 ul
- **Run Time:** 70.00 Minutes
- **Acquired By:** Breeze
- **Date Acquired:** 9/10/2012 4:03:07 PM MYT
- **Acq. Method:** Saadi RP
- **Date Processed:** 9/18/2012 12:39:52 PM MYT
- **Channel Name:** W2489 ChB
- **Sample Set Name:**

Table:

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV*sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.396</td>
<td>30716</td>
<td>1.14</td>
<td>4681</td>
</tr>
<tr>
<td>2</td>
<td>31.854</td>
<td>2499062</td>
<td>92.91</td>
<td>203067</td>
</tr>
<tr>
<td>3</td>
<td>33.212</td>
<td>36601</td>
<td>1.36</td>
<td>6589</td>
</tr>
<tr>
<td>4</td>
<td>33.397</td>
<td>41688</td>
<td>1.55</td>
<td>8103</td>
</tr>
<tr>
<td>5</td>
<td>34.636</td>
<td>81693</td>
<td>3.04</td>
<td>11116</td>
</tr>
</tbody>
</table>

Graph:

- **AU** on the y-axis, **Minutes** on the x-axis, with peaks at RT values 30.396, 31.854, 33.212, 33.397, and 34.636.
').

LC-Mass spectra of PH16aa

![LC-Mass spectra of PH16aa]

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (µV/sec)</th>
<th>% Area</th>
<th>Height (µV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.809</td>
<td>498190</td>
<td>90.33</td>
<td>473699</td>
<td>88.80</td>
</tr>
<tr>
<td>27.774</td>
<td>341839</td>
<td>6.59</td>
<td>398456</td>
<td>7.24</td>
</tr>
<tr>
<td>28.693</td>
<td>100169</td>
<td>3.09</td>
<td>21152</td>
<td>3.96</td>
</tr>
</tbody>
</table>
FT-IR and CD spectrum of PH16aa
- FT-IR and CD spectrum of 16aa

CD spectra in 1% SDS
- Helix (%): 34.1
- Beta (%): 13.8
- Turn (%): 12.5
- Random (%): 32.7
- Sum (%): 93.2

CD spectra in water
- Helix (%): 18.5
- Beta (%): 29.5
- Turn (%): 12.5
- Random (%): 38.5
- Sum (%): 99.0
Characterization of PE16aa

- HPLC of PE16aa

SAMPLE INFORMATION

- Sample Name: Pro-Glu-16AA, HPLC
- Sample Type: Unknown
- Vial: 1
- Injection #: 2
- Injection Volume: 10.00 ul
- Run Time: 90.00 Minutes
- Acquired By: Breeze
- Date Acquired: 7/5/2012 4:28:55 PM MYT
- Acq. Method: Saadi RP
- Date Processed: 9/18/2012 12:28:44 PM MYT
- Channel Name: W2489 ChB
- Sample Set Name:

Graph

Table

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (μV/sec)</th>
<th>% Area</th>
<th>Height (μV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.308</td>
<td>100.00</td>
<td>8391</td>
<td>100.00</td>
</tr>
</tbody>
</table>
- Spectroscopes data of PE-16aa
CD spectra in 1% SDS
- Helix (%): 36.5
- Beta (%): 11.5
- Turn (%): 12.5
- Random (%): 32.1

CD spectra in water
- Helix (%): 19.1
- Beta (%): 22.9
- Turn (%): 12.5
- Random (%): 38.6
HPLC analysis of 5aa

SAMPLE INFORMATION

<table>
<thead>
<tr>
<th>Sample Name:</th>
<th>PELFV, NH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type:</td>
<td>Unknown</td>
</tr>
<tr>
<td>Vial:</td>
<td>1</td>
</tr>
<tr>
<td>Injection #:</td>
<td>2</td>
</tr>
<tr>
<td>Injection Volume:</td>
<td>20.00 ul</td>
</tr>
<tr>
<td>Run Time:</td>
<td>66.00 Minutes</td>
</tr>
<tr>
<td>Acquired By:</td>
<td>Breeze</td>
</tr>
<tr>
<td>Date Acquired:</td>
<td>2/6/2013 2:44:03 PM MYT</td>
</tr>
<tr>
<td>Acq. Method:</td>
<td>Saadi</td>
</tr>
<tr>
<td>Date Processed:</td>
<td>2/7/2013 1:27:59 PM MYT</td>
</tr>
<tr>
<td>Channel Name:</td>
<td>W2489 ChA</td>
</tr>
<tr>
<td>Sample Set Name:</td>
<td></td>
</tr>
</tbody>
</table>

CHROMATOGRAM

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (μV*sec)</th>
<th>% Area</th>
<th>Height (μV)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.728</td>
<td>1622534</td>
<td>165183</td>
<td>95.41</td>
</tr>
<tr>
<td>2</td>
<td>31.293</td>
<td>27689</td>
<td>1603</td>
<td>1.63</td>
</tr>
<tr>
<td>3</td>
<td>36.215</td>
<td>50317</td>
<td>4885</td>
<td>2.96</td>
</tr>
</tbody>
</table>

109
HPLC analysis of 8aa(z)