Supplement

Role of Carbon Coating in Improving Electrochemical Performance of Li-rich Li(Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13})O_2 Cathode

Bohang Song,¹ Cuifeng Zhou,² Yu Chen,³ Zongwen Liu,² Man On Lai,¹ Junmin Xue³ and Li Lu*,¹

¹ Materials Science Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.
² School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia.
³ Department of Materials Science and Engineering, National University of Singapore, Singapore 117576.

E-mail: luli@nus.edu.sg
Fig. S1 TGA plots of the C-3 and C-15 samples.
Fig. S2 Bright field TEM images of the pristine, C-3-H and C-15-H samples.
Fig. S3 HRTEM image of C-15-H sample, indicating further reduced carbon layers on particle surface with about 2 nm thickness.
Fig. S4 Charge/discharge curves with corresponding dQ/dV plots at different stages of cycling, i.e. 2nd, 5th, 10th, 30th, 50th, 70th and 100th. All samples were tested at 0.2 C in a voltage window of 2.0 - 4.8 V at room temperature. The peaks related to the initially-formed spinels, at 2.9 V (charge) and 2.75 V (discharge) tend to vanish and merge into main contribution peaks in C-3-H and C-15-H, as labeled by ♦. The main contribution peaks after 100 cycles in all the samples, as labeled by *, are unequal in shapes or
covered areas, which may suggest slightly different mechanisms in response to electrochemical insertion/extraction of Li.