Supporting information

Economically viable sensitive and selective luminescent sensor for the determination of Au(III) in environmental samples

N. Vasimalai, K. Rajalakshmi and S. Abraham John*

Centre for Nanoscience and Nanotechnology
Department of Chemistry, Gandhigram Rural Institute
Gandhigram – 624 302, Dindigul, Tamilnadu, India.
E-mail: abrajohn@yahoo.co.in
Fig. S1. Effect of (A) DMT (B) AMT and (C) MMT concentrations on the fluorescence intensity in the presence of 8 nM Au(III).
Fig. S2. Effect of pH on the fluorescence intensity of 0.5 mM of (A) DMT, (B) AMT and (C) MMT in the presence of 8 nM Au(III).
Fig. S3. Job’s plot of (A) DMT, (B) AMT and (C) MMT with Au(III) in water (pH: 5.0). The total concentrations of ligands and Au(III) was 10 µM. The molar fraction was given by $[\text{Au}^{3+}]/([\text{Au}^{3+}]+[\text{ligand}])$.

- (A) DMT
- (B) AMT
- (C) MMT
Scheme S1. Possible binding sites of DMT, AMT and MMT ligands with Au(III).
Fig. S4. Emission spectra of 0.5 mM DMT in the presence of different concentrations of Au(III): (A): (a)-(z) each increment 100 pM of Au(III) and (B): (a)-(z) each increment 10 pM of Au(III) ($\lambda_{\text{ex}}/\lambda_{\text{em}}$: 330/435 nm).