Electronic supplementary information (ESI)

Photoelectrochemical Activity of ZnFe$_2$O$_4$ Modified α-Fe$_2$O$_3$ Nanorod Array Films

Youhong Guo,a Yanming Fu,b Ya Liub, and Shaohua Shenb*

a Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
b International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China. E-mail: shshen_xjtu@mail.xjtu.edu.cn

Fig. S1. Spectral reflectance for pristine α-Fe$_2$O$_3$ and ZnFe$_2$O$_4$ modified α-Fe$_2$O$_3$ (ZFO-1 and ZFO-2) nanorod films.
Fig. S2. Spectral transmittance for pristine α-Fe$_2$O$_3$ and ZnFe$_2$O$_4$ modified α-Fe$_2$O$_3$ (ZFO-1 and ZFO-2) nanorod films.
The band gap can be determined from transmittance and reflectance spectra using the Tauc plot method as expressed in equation (1).1

\[\alpha h \nu = C(h \nu - E_g)^n \]

(1)

where \(\alpha \) is the absorption coefficient, \(h \nu \) the photon energy, \(C \) the photon energy dependent constant, and \(E_g \) the band gap energy. Exponent \(n \) takes 1/2 and 2 for direct and indirect optical transition, respectively. In addition, the absorption coefficient \(\alpha \) can be expressed by equation (2).2

\[ad = \ln\left(\frac{T}{1 - R^2}\right) \]

(2)

where \(d, T \) and \(R \) represent the thickness, transmittance, and reflectance of the films, respectively. Exponent \(n \) takes 2 because \(\alpha{\text{Fe}}_2\text{O}_3 \) is an indirect optical transition material. Fig. S3 shows the \((ah \nu)^{1/2}\) versus photon energy plot.

Fig. S3. Plots of \((ah \nu)^{1/2}\) versus photon energy of pristine \(\alpha{\text{Fe}}_2\text{O}_3 \) and ZnFe\textsubscript{2}O\textsubscript{4} modified \(\alpha{\text{Fe}}_2\text{O}_3 \) (ZFO-1 and ZFO-2) nanorod films.

References