Facile Construction Hybrid Polystyrene with a String of Lanterns Shape from Monovinyl–substituted POSS and Commercial Polystyrene via Friedel–Crafts Reaction and Its Properties

Liguang Li and Hongzhi Liu

Key Laboratory of Special Functional Aggregated Materials, Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China

E–mail: liuhongzhi@sdu.edu.cn.
Experimental

Synthesis of MVS

Trichlorovinylsilane (1.3 g, 8.0 mmol) was added to a solution of 1,3,5,7,9,11,14-Heptaisobutyltricyclo[7.3.3.15,11]heptasiloxane-endo-3,7,14-triol (iBu₇Si₇O₉(OH)₃) (5 g, 6.3 mmol) and triethylamine (3 ml, 21.5 mmol) in THF (100 ml) in an ice bath under an argon atmosphere. The mixture was stirred overnight and then filtered to remove the NEt₃·HCl precipitate. After almost complete evaporation of the volatile compounds, methanol was added to precipitate MVS, which was separated by filtration and dried under vacuum (5.0 g, 94%). ¹H NMR (300 MHz, CDCl₃): δ 6.02 (m, 3H), 1.86 (m, 7H), 0.97 (m, 42H), 0.61 ppm (m, 14H); ¹³C NMR (75 MHz, CDCl₃): δ 135.8, 129.9, 25.7, 23.9, 22.3 ppm; ²⁹Si NMR (60 MHz, CDCl₃): δ -67.4, -67.9 ppm; IR (KBr pellet cm⁻¹): 3069, 2950, 1606, 1112 cm⁻¹ (Fig. S10).
Fig. S1 EDX figures of PS and PS/POSS nanocomposites.
Fig. S2 13C NMR figures of PS/POSS\textunderscore 15 (a) and model compound PS/POSS\textunderscore 100 (b and c).
Fig. S3 POM graphs of PS/POSS nanocomposites.

Fig. S4 SAXS figures of PS, POSS and PS/POSS nanocomposites.
Fig. S5 TEM image of PS.

Fig. S6 DLS figures of PS and PS/POSS nanocomposites.
Fig. S7 CA figures of PS, POSS and PS/POSS nanocomposites.
Fig. S8 Optical graphs of PS/POSS nanocomposites membrane.

Fig. S9 SEM images of PS/POSS nanocomposites.
Fig. S10 Characterization data of MVS (1H NMR (a), 13C NMR (b), 29Si NMR (c) and FT-IR (d) spectra of MVS).