Unexpected Hydrazine Hydrate-Mediated Aerobic Oxidation of Aryl/Heteroaryl boronic Acids to Phenols with Ambient Air

Yanzhen Zhong, Linxin Yuan, Zheng Huang, Wenchao Gu, Ye Shao, and Wei Han*

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
Wenyuan Road NO.1, 210023 Nanjing (China)
Fax: (+)86-(0)25-8589-1455
E-mail: whhanwei@gmail.com
1. General procedure for aerobic oxidation of aryl/heteroaryl boronic acids to phenols with ambient Air. A flask was charged with aryl/heteroaryl boronic acid 1 (0.5 mmol), N₂H₄·H₂O (0.25 mmol, 14.4 µL), Cs₂CO₃ (1.0 mmol, 329.1 mg), H₂O (2.5 mmol, 45.0 µL), and PEG-400 (2.0 g). Then, the flask was stirred at 80 °C in open air for the indicated time. At the end of the reaction, the reaction mixture was acidified with dilute aqueous HCl and extracted with ethyl acetate (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate).

2. Analytical methods

¹H and ¹³C NMR spectra of solutions in CDCl₃ or DMSO-d₆ were recorded on a Bruker Avance 400 instrument. Chemical shifts were expressed in parts per million (ppm) downfield from tetramethylsilane and refer to the solvent signals (CDCl₃ : H 7.24 and C 77.0 ppm; DMSO-d₆ : H 2.50 and C 39.5 ppm). The signals of water were observed at about 1.58 ppm and 3.34 ppm in CDCl₃ and DMSO-d₆, respectively. Abbreviations for signal couplings are: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets; dt, triplet of doublets; td, doublet of triplets; tt, triplet of triplets; ddd, doublet of doublet of doublets; tdd, doublet of doublet of triplets. Coupling constants, J, were reported in hertz unit (Hz).
3. Analytical data of products

Dibenzothiophen-4-ol (2a): Following general procedure, 2a was isolated as a light pink solid (86% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1.

\[
\text{H NMR (400 MHz, DMSO-}d_6\text{): }\delta 10.5 \text{ (br s, 1 H), 8.29–8.26 (m, 1 H), 8.02–7.99 (m, 1 H), 7.80 (dd, } J = 8.0, 4.0 \text{ Hz, 1 H), 7.52–7.45 (m, 2 H), 7.34 (t, } J = 8.0 \text{ Hz, 1 H), 6.95 ppm (dd, } J = 8.0, 4.0 \text{ Hz, 1 H); } \text{C NMR (100 MHz, DMSO-}d_6\text{): }\delta 152.3, 138.7, 136.9, 135.7, 126.9, 126.2, 125.6, 124.6, 123.2, 122.2, 112.9, 111.5 \text{ ppm; mp } 166.3–167.1 ^\circ \text{C (lit.}\text{S1 mp 158-160 } ^\circ \text{C).}
\]

2,5-Dimethoxyphenol (2b): Following general procedure, 2b was isolated as a light yellow liquid (91% yield), known compound. The NMR spectroscopic data agree with those described in ref. S2.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): }\delta 6.75 \text{ (d, } J = 8.0 \text{ Hz, 1 H), 6.54 (d, } J = 4.0 \text{ Hz, 1 H), 7.64 (dd, } J = 8.0, 4.0 \text{ Hz, 1 H), 5.65 (s, 1 H), 3.82 (s, 3 H), 3.73 ppm (s, 3 H); } \text{C NMR (100 MHz, CDCl}_3\text{): }\delta 154.5, 146.4, 140.9, 111.4, 104.2, 101.7, 56.6, 55.6 \text{ ppm.}
\]

3,5-Dimethoxyphenol (2c): Following general procedure, 2c was isolated as a light brown oil (92% yield), known compound. The NMR spectroscopic data agree with those described in ref. S3.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): }\delta 6.04 \text{ (t, } J = 2.0 \text{ Hz, 1 H), 6.02 (d, } J = 2.0 \text{ Hz, 2 H), 4.73 (br s, 1 H), 3.71 ppm (s, 6 H); } \text{C NMR (100 MHz, CDCl}_3\text{): }\delta 161.5, 157.6, 94.3, 92.9, 55.3 \text{ ppm.}
\]

2,6-Dimethylphenol (2d): Following general procedure A, 2d was isolated as a white solid (96% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): }\delta 6.96 \text{ (d, } J = 8.0 \text{ Hz, 2 H), 6.74 (t, } J = 8.0 \text{ Hz, 1 H), 4.58 (br s, 1 H), 2.24 ppm (s, 6 H); } \text{C NMR (100 MHz, CDCl}_3\text{): }\delta 152.1, 128.6, 122.9, 120.2, 15.8 \text{ ppm; mp 42.8–44.2 } ^\circ \text{C (lit.}\text{S1 mp 43-45 } ^\circ \text{C).}
\]
2-Methoxyphenol (2e): Following general procedure, 2e was isolated as a light yellow oil (97% yield), known compound. The NMR spectroscopic data agree with those described in ref.S1 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 6.94–6.91\) (m, 1 H), \(6.89–6.84\) (m, 3 H), \(5.64\) (br s, 1 H), \(3.87\) ppm (s, 3 H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 146.5, 145.6, 121.4, 120.1, 114.5, 110.7, 55.8\) ppm.

\begin{center}
\includegraphics[width=0.2\textwidth]{2e}
\end{center}

3-Methoxyphenol (2f): Following general procedure, 2f was isolated as a light yellow oil (83% yield), known compound. The NMR spectroscopic data agree with those described in ref.S1 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 7.11\) (t, \(J = 8.0\) Hz, 1 H), \(6.49–6.30\) (m, 3 H), \(4.14\) (br s, 1 H), \(3.76\) ppm (s, 3 H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 160.9, 156.9, 130.1, 107.9, 106.3, 101.6, 55.3\) ppm.

\begin{center}
\includegraphics[width=0.2\textwidth]{2f}
\end{center}

4-Methoxyphenol (2g): Following general procedure, 2g was isolated as a low melting point solid (98% yield), known compound. The NMR spectroscopic data agree with those described in ref.S1 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 6.79–6.73\) (m, 4 H), \(4.86\) (br s, 1 H), \(3.75\) ppm (s, 3 H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 153.7, 149.4, 116.0, 114.8, 55.8\) ppm.

\begin{center}
\includegraphics[width=0.2\textwidth]{2g}
\end{center}

3-Aminophenol (2h): Following general procedure, 2h was isolated as a white solid (85% yield), known compound. The NMR spectroscopic data agree with those described in ref.S4 1H NMR (400 MHz, DMSO-\textsubscript{d}\textsubscript{3}): \(\delta 8.86\) (br s, 1 H), \(6.80–6.76\) (m, 1 H), \(6.02–6.00\) (m, 2 H), \(5.96–5.93\) (m, 1 H), \(4.92\) ppm (br s, 2 H); 13C NMR (100 MHz, DMSO-\textsubscript{d}\textsubscript{3}): \(\delta 158.1, 149.8, 129.5, 105.6, 103.5, 101.1\) ppm; mp 118.8–120.2 °C (lit.S4 mp 120–121 °C).

\begin{center}
\includegraphics[width=0.2\textwidth]{2h}
\end{center}

2-Methylphenol (2i): Following general procedure, 2i was isolated as a low melting point solid (91% yield), known compound. The NMR spectroscopic data agree with those described in ref.S5 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 7.13–7.06\) (m, 2 H), \(6.85\) (td, \(J = 8.0, 0.8\) Hz, 1 H), \(6.76\) (d, \(J = 8.0\) Hz, 2 H), \(4.78\) (br s, 1 H), \(2.25\) ppm (s, 3 H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 153.7, 131.0, 127.1, 123.7, 120.7, 114.8, 15.7\) ppm.
3-Methylphenol (2j): Following general procedure, 2j was isolated as a colorless oil (95% yield), known compound. The NMR spectroscopic data agree with those described in ref. S6.

1H NMR (400 MHz, CDCl$_3$): δ 7.13 (t, $J = 8.0$ Hz, 1 H), 6.76 (d, $J = 8.0$ Hz, 1 H), 6.67–6.64 (m, 2 H), 4.89 (br s, 1 H), 2.30 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 155.3, 139.8, 129.4, 121.6, 116.0, 112.3, 21.3 ppm.

4-Methylphenol (2k): Following general procedure, 2k was isolated as a low melting point solid (90% yield), known compound. The NMR spectroscopic data agree with those described in ref. S6.

1H NMR (400 MHz, CDCl$_3$): δ 7.02–6.91 (dd, $J = 8.0$, 0.8 Hz, 2 H), 6.72 (d, $J = 8.0$ Hz, 2 H), 4.49 (br s, 1 H), 2.26 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 153.2, 130.0, 129.9, 115.0, 20.4 ppm.

Phenol (2l): Following general procedure A, 2l was isolated as a white yellow solid (87% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1.

1H NMR (400 MHz, CDCl$_3$): δ 7.24 (t, $J = 8.0$ Hz, 2 H), 6.93 (t, $J = 8.0$ Hz, 1 H), 6.83 (d, $J = 8.0$ Hz, 2 H), 4.84 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 155.3, 129.7, 120.8, 115.3 ppm; mp 41.2–42.6 °C (lit. S1 mp 40–42 °C).

4-Iodophenol (2m): Following general procedure A, 2m was isolated as a light yellow solid (98% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1.

1H NMR (400 MHz, CDCl$_3$): δ 7.49 (d, $J = 8.0$ Hz, 2 H), 6.61 (d, $J = 8.0$ Hz, 2 H), 5.03 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 155.3, 138.4, 117.8, 82.7 ppm; mp 63.3–64.2 °C (lit. S1 mp 90–93 °C).

4-Bromophenol (2n): Following general procedure, 2n was isolated as a light yellow solid (96%
yield), known compound. The NMR spectroscopic data agree with those described in ref. S1. 1H NMR (400 MHz, CDCl3): δ 7.31 (d, J = 8.0 Hz, 2 H), 6.71 (d, J = 8.0 Hz, 2 H), 4.83 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl3): δ 154.6, 132.4, 117.2, 112.9 ppm; mp 54.3–56.2 °C (lit. S1 mp 55–58 °C).

3-Hydroxyacetophenone (2o): Following general procedure, 2o was isolated as a white solid (95% yield), known compound. The NMR spectroscopic data agree with those described in ref. S7. 1H NMR (400 MHz, DMSO-d6): δ 9.79 (s, 1 H), 7.41 (dt, J = 8.0, 4.0 Hz, 1 H), 7.32 (t, J = 8.0 Hz, 2 H), 7.03 (ddd, J = 8.0, 4.0, 2.0 Hz, 1 H), 2.52 ppm (s, 3 H); 13C NMR (100 MHz, DMSO-d6): δ 197.8, 157.6, 138.3, 129.8, 120.3, 119.3, 114.3, 26.8 ppm; mp 85.8–86.2 °C (lit. S7 mp 92–95 °C).

Methyl 4-Hydroxybenzoate (2p): Following general procedure, 2p was isolated as a white solid (97% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1. 1H NMR (400 MHz, CDCl3): δ 7.94 (d, J = 8.0 Hz, 2 H), 6.84 (d, J = 8.0 Hz, 2 H), 5.51 (br s, 1 H), 3.87 ppm (s, 1 H); 13C NMR (100 MHz, CDCl3): δ 167.3, 160.1, 131.9, 122.4, 115.2, 52.0 ppm; mp 112.0–113.1 °C (lit. S1 mp 121–123 °C).

4-Hydroxybenzonitrile (2q): Following general procedure, 2q was isolated as a light yellow solid (98% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1. 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 8.0 Hz, 2 H), 6.92 (d, J = 8.0 Hz, 2 H), 6.34 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl3): δ 160.4, 134.3, 119.3, 116.5, 102.8 ppm; mp 109.1–111.2 °C (lit. S1 mp 107–109 °C).

3-Nitrophenol (2r): Following general procedure, 2r was isolated as a light yellow solid (89% yield), known compound. The NMR spectroscopic data agree with those described in ref. S1. 1H NMR (400 MHz, CDCl3): δ 7.79 (ddd, J = 8.0, 4.0, 2.0 Hz, 1 H), 7.70 (t, J = 8.0 Hz, 1 H), 7.39 (t, J = 8.0, 4.0, 2.0 Hz, 1 H), 7.19 (ddd, J = 8.0, 4.0, 2.0 Hz, 1 H), 5.97 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl3): δ 156.3, 149.0, 130.3, 122.1, 115.9, 110.5 ppm; mp 99.0–100.1 °C (lit. S1 mp 96–99 °C).
2-Napthol (2s): Following general procedure, 2s was isolated as a white solid (97% yield), known compound. The NMR spectroscopic data agree with those described in ref. 81. 1H NMR (400 MHz, CDCl$_3$): δ 7.75 (t, $J = 8.0$ Hz, 2 H), 7.66 (d, $J = 8.0$ Hz, 1 H), 7.44–7.30 (m, 1 H), 7.13 (d, $J = 4.0$ Hz, 1 H), 7.11 (td, $J = 8.0$, 4.0 Hz, 2 H), 4.86 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 153.3, 134.6, 129.8, 128.9, 127.7, 126.5, 126.4, 123.6, 117.7, 109.5 ppm; mp 116.0–116.8 °C (lit. 81 mp 121–123 °C).

![2s](image) H_2N

4-(Methylmercapto)phenol (2t): Following general procedure A, 2t was isolated as a white solid (85% yield), known compound. The NMR spectroscopic data agree with those described in ref. 88. 1H NMR (400 MHz, CDCl$_3$): δ 7.20 (d, $J = 8.4$ Hz, 2 H), 6.77 (d, $J = 8.4$ Hz, 2 H), 5.18 (br s, 1 H), 2.42 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 154.0, 130.3, 128.8, 116.1, 18.0 ppm; mp 83.4–84.3 °C (lit. 88 mp 83-85 °C).

![2t](image) H_2N

Dibenzofuran-4-ol (2u): Following general procedure, 2u was isolated as a white solid (83% yield), known compound. The NMR spectroscopic data agree with those described in ref. 81. 1H NMR (400 MHz, CDCl$_3$): δ 7.92 (d, $J = 8.0$ Hz, 1 H), 7.57 (d, $J = 8.0$ Hz, 1 H), 7.51 (dd, $J = 8.0$, 4.0 Hz, 1 H), 7.45 (td, $J = 8.0$, 2.0 Hz, 1 H), 7.34 (td, $J = 8.0$, 2.0 Hz, 1 H), 7.21 (t, $J = 8.0$ Hz, 1 H), 7.02 (dd, $J = 8.0$, 4.0 Hz, 1 H), 5.49 ppm (br s, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 156.0, 144.0, 141.1, 127.3, 125.7, 124.6, 123.7, 122.9, 121.0, 113.6, 112.8, 111.8 ppm; mp 98.2–100.1 °C (lit. 81 mp 98–100 °C).

![2u](image) H_2N

Pyridin-3-ol (2v): Following general procedure, 2v was isolated as a white solid (91% yield), known compound. The NMR spectroscopic data agree with those described in ref. 87. 1H NMR (400 MHz, CDCl$_3$): δ 8.27 (d, $J = 4.0$ Hz, 1 H), 8.08 (dd, $J = 8.0$, 4.0 Hz, 1 H), 7.32–7.25 ppm (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 155.1, 139.3, 136.5, 125.2, 125.1 ppm; mp 125.0–126.2 °C (lit. 87 mp 127 °C).

![2v](image) H_2N

1H-indazol-6-ol (2w): Following general procedure, 2w was isolated as a light yellow solid (96% yield), known compound (CAS: 23244-88-4). 1H NMR (400 MHz, DMSO-d$_6$): δ 12.58 (br s, 1 H),
9.57 (br s, 1 H), 7.86 (s, 1 H), 7.52 (d, J = 8.0 Hz, 1 H), 6.78 (s, 1 H), 6.64 ppm (dd, J = 8.0, 2.0 Hz, 1 H); \(^{13}\text{C}\) NMR (100 MHz, DMSO-d₆): δ 156.5, 141.5, 133.3, 121.1, 117.0, 112.3, 93.2 ppm; mp 161.8–164.2 °C.

4. References
5. Copies of NMR Spectra

![NMR Spectra Image]