 electronically supporting information

Novel photofunctional hybrid materials (alumina and titania) functionalized with both MOF and lanthanide complexes through coordination bonds

X. Y. Xu, B. Yan*

Figure S1 Structural representations of Al-MIL-53-COOH (MOF), whose AlO$_6$-octahedra are presented in white.

Figure S2 X-ray diffraction pattern of Al-MIL-53-COOH (MOF) and its stimulated XRD pattern
Figure S3 X-ray diffraction pattern of hybrid materials L-Eu/Tb-PDA-Al/Ti-MOF: (a) alumina system; (b) titania system (Eu$^{3+}$, L = TTA, TAA; Tb$^{3+}$, L = TAA, AA)
Figure S4 The excitation and emission spectra and the CIE chromaticity diagram of MOF (Al-MIL-53-COOH)

Figure S5 The CIE chromaticity diagrams of the hybrids TAA-Eu-PDA-Al-MOF (a), TTA-Eu-PDA-Al-MOF (b), TTA-Eu-PDA-Ti-MOF (c) and TAA-Eu-PDA-Ti-MOF (d).
Figure S6 The CIE chromaticity diagram of TAA-Tb-PDA-Al-MOF (a), AA-Tb-PDA-Al-MOF (b), TAA-Tb-PDA-Ti-MOF (c) and AA-Tb-PDA-Ti-MOF (d).

Figure S7 The pictures of hybrid films fabricated with TTA-Eu-PDA-Ti-MOF (a) and TTA-Eu-PDA-Ti-MOF (b)
Figure S8 The excitation and emission spectra of hybrid films fabricated with TTA-Eu-PDA-Ti-MOF (a) and TAA-Eu-PDA-Ti-MOF (b).