Supporting Information for

Allylic amination of Passerini adducts. Application to the selective synthesis of chromone-substituted \(\alpha \)-and \(\gamma \)-amino acid peptidic and retropeptidic units

Ana G. Neo,* Lucia López-García and Carlos F. Marcos.*

Laboratorio de Química Orgánica y Bioorgánica (L.O.B.O.). Dept. Química Orgánica e Inorgánica. Facultad de Veterinaria. Universidad de Extremadura. 10071 Cáceres, Spain. E-mail: aneo@unex.es; cfernan@unex.es

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Spectra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>¹H-NMR of compound 1a</td>
<td>S3</td>
</tr>
<tr>
<td>¹³C-NMR of compound 1a</td>
<td>S3</td>
</tr>
<tr>
<td>¹H-NMR of compound 1b</td>
<td>S4</td>
</tr>
<tr>
<td>¹³C-NMR of compound 1b</td>
<td>S4</td>
</tr>
<tr>
<td>¹H-NMR of compound 1c</td>
<td>S5</td>
</tr>
<tr>
<td>¹³C-NMR of compound 1c</td>
<td>S5</td>
</tr>
<tr>
<td>¹H-NMR of compound 1d</td>
<td>S6</td>
</tr>
<tr>
<td>¹³C-NMR of compound 1d</td>
<td>S6</td>
</tr>
<tr>
<td>¹H-NMR of compound 1e</td>
<td>S7</td>
</tr>
<tr>
<td>¹³C-NMR of compound 1e</td>
<td>S7</td>
</tr>
<tr>
<td>¹H-NMR of compound 5a</td>
<td>S8</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5a</td>
<td>S8</td>
</tr>
<tr>
<td>¹H-NMR of compound 5b</td>
<td>S9</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5b</td>
<td>S9</td>
</tr>
<tr>
<td>¹H-NMR of compound 5c</td>
<td>S10</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5c</td>
<td>S10</td>
</tr>
<tr>
<td>¹H-NMR of compound 5d</td>
<td>S11</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5d</td>
<td>S11</td>
</tr>
<tr>
<td>¹H-NMR of compound 5e</td>
<td>S12</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5e</td>
<td>S12</td>
</tr>
<tr>
<td>¹H-NMR of compound 5f</td>
<td>S13</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5f</td>
<td>S13</td>
</tr>
<tr>
<td>¹H-NMR of compound 5g</td>
<td>S14</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5g</td>
<td>S14</td>
</tr>
<tr>
<td>¹H-NMR of compound 5h</td>
<td>S15</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5h</td>
<td>S15</td>
</tr>
<tr>
<td>¹H-NMR of compound 5i</td>
<td>S16</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5i</td>
<td>S16</td>
</tr>
<tr>
<td>¹H-NMR of compound 5j (diastereoisomer A)</td>
<td>S17</td>
</tr>
<tr>
<td>¹³C-NMR of compound 5j (diastereoisomer A)</td>
<td>S17</td>
</tr>
<tr>
<td>¹H-NMR of compound 5j (diastereoisomer B)</td>
<td>S18</td>
</tr>
</tbody>
</table>
13C-NMR of compound 5j (diastereoisomer B) S18

1H-NMR of compound 5k (diastereoisomer A) S19

13C-NMR of compound 5k (diastereoisomer A) S19

1H-NMR of compound 5l S20

13C-NMR of compound 5l S20

1H-NMR of compound 5m S21

13C-NMR of compound 5m S21

1H-NMR of compound 5n (diastereoisomer A) S22

13C-NMR of compound 5n (diastereoisomer A) S22

1H-NMR of compound 5n (mixture of diastereoisomers) S23

13C-NMR of compound 5n (mixture of diastereoisomers) S23

1H-NMR of compound 5o (diastereoisomer A) S24

13C-NMR of compound 5o (diastereoisomer A) S24

1H-NMR of compound 5o (mixture of diastereoisomers) S25

13C-NMR of compound 5o (mixture of diastereoisomers) S25

1H-NMR of compound 6a S26

13C-NMR of compound 6a S26

1H-NMR of compound 6b S27

13C-NMR of compound 6b S27

1H-NMR of compound 6c S28

13C-NMR of compound 6c S28

1H-NMR of compound 6d S29

13C-NMR of compound 6d S29

1H-NMR of compound 6f S30

13C-NMR of compound 6f S30

1H-NMR of compound 6g S31

13C-NMR of compound 6g S31

1H-NMR of compound 6h S32

13C-NMR of compound 6h S32

1H-NMR of compound 6i S33

13C-NMR of compound 6i S33

1H-NMR of compound 6j S34

13C-NMR of compound 6j S34

1H-NMR of compound 6p S35

13C-NMR of compound 6p S35
1H-NMR and 13C-NMR of compound 1a
\(^1\)H-NMR and \(^{13}\)C-NMR of compound 1b
1H-NMR and 13C-NMR of compound 1c
1H-NMR and 13C-NMR of compound 1d

![Chemical structure and NMR spectra](image)

1H-NMR spectrum:
- Peaks at 1.02, 0.82, 0.83 ppm
- Peaks at 3.29 and 3.61 ppm
- Peaks at 12.3 ppm

13C-NMR spectrum:
- Peaks at 100 ppm and 160 ppm

Chemical structure:
- Compound 1d
1H-NMR and 13C-NMR of compound 1e
1H-NMR and 13C-NMR of compound 5a
1H-NMR and 13C-NMR of compound 5b
1H-NMR and 13C-NMR of compound 5c
1H-NMR and 13C-NMR of compound 5d
1H-NMR and 13C-NMR of compound 5e
1H-NMR and 13C-NMR of compound 5f
1H-NMR and 13C-NMR of compound 5g
1H-NMR and 13C-NMR of compound 5h

![NMR spectra of compound 5h]
1H-NMR and 13C-NMR of compound 5i
1H-NMR and 13C-NMR of compound 5j
1H-NMR and 13C-NMR of compound 5k
1H-NMR and 13C-NMR of compound 51
1H-NMR and 13C-NMR of compound 5m
1H-NMR and 13C-NMR of compound 5n

![Diastereoisomer A](image1)

![Diastereoisomer B](image2)

![Diastereoisomer C](image3)
Mixture of diastereoisomers

Mixture of diastereoisomers
$\text{1H-NMR and 13C-NMR of compound 5o}$

![Diagram of compound 5o]

![Diagram of compound 5o]

![Diagram of compound 5o]
Mixture of diastereoisomers
1H-NMR and 13C-NMR of compound 6a
1H-NMR and 13C-NMR of compound 6b
1H-NMR and 13C-NMR of compound 6c
^{1}H-NMR and ^{13}C-NMR of compound 6d
1H-NMR and 13C-NMR of compound 6f
1H-NMR and 13C-NMR of compound 6g
1H-NMR and 13C-NMR of compound 6h
1H-NMR and 13C-NMR of compound 6i
^{1}H-NMR and ^{13}C-NMR of compound 6j
1H-NMR and 13C-NMR of compound 6p