Supporting Information

For

Imino–Phenolic–Azodye Appended Rhodamine as Primary Fluorescence “Off–On” Chemosensors for Tin (Sn^{4+}) in Solution and in Raw Cells and the Recognition of Sulphide by [AR-Sn]

Ajit Kumar Mahapatraa, Saikat Kumar Mannaa, Kalipada Maitia, Rajkishor Majia, Chitrangada Das Mukhopadhyayb, Deblina Sarkarc and Tapan Kumar Mondalc

aDepartment of Chemistry and bCentre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, India.

cDepartment of Chemistry, Jadavpur University, Kolkata-700032, India.

Contents

1. Experimental details S3-S8
2. 1H NMR of AR S9
3. 13C spectra of AR S10
4. ESI MS spectra of AR S11
5. ESI MS spectra of AR-Sn complex S12
6. 1H NMR spectra of NAR S13
7. ESI MS spectra of NAR S14
8. ESI MS spectra of NAR-Sn complex S15
9. Job’s plot and association constant graph for AR-Sn complex S16
10. FTIR spectra of AR and AR-Sn complex S16
11. Competitive experiments S17
12. Bar diagram of AR in presence of various metal ions S17
13. Photographic image of AR in presence of various metal ions S18
14. Reversibility study S18
15. Absorption and emission spectra of NAR in presence of Sn$^{4+}$ ions S19
16. The effect of pH on the fluorescence intensity of AR and AR-Sn$^{4+}$ S19
17. DFT study S20-S21
18. MTT assay S22
19. References S23-S24
1. EXPERIMENTAL DETAILS:

General Methods and Materials. All of the materials for synthesis were commercially available and used without further purification. Solutions of Li\(^+\), Na\(^+\), K\(^+\), Sr\(^{2+}\), Ba\(^{2+}\), Cr\(^{3+}\), Ca\(^{2+}\), Al\(^{3+}\), Fe\(^{3+}\), Pb\(^{2+}\) and Sn\(^{4+}\) were prepared from chloride salts; solutions of Hg\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\), Fe\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Mn\(^{2+}\), Zn\(^{2+}\), Mg\(^{2+}\) were prepared from perchlorate salts; solution of Ag\(^{+}\) was prepared from nitrate salts and used immediately. For spectrophotometer measurements, EtOH (Spectrochem) and Elix Millipore water were used as solvents throughout all experiments. UV–visible spectra were recorded with a JASCO V530 spectrophotometer. Fluorescence spectra recorded with Photon Technology International (PTI-LPS-220B) spectrophotometer. FTIR spectra were recorded as KBr pellets using a JASCO FTIR spectrometer (model FTIR-460 plus). The \(^1\)H and \(^{13}\)C NMR spectra were recorded on Bruker–400 MHz spectrometer. Mass spectra were carried out using a Water’s QTOF Micro YA 263 mass spectrometer. The \(^1\)H NMR chemical shift values are expressed in ppm (\(\delta\)) relative to CHCl\(_3\) (\(\delta = 7.25\) ppm).

Solution of the probe AR in EtOH/H\(_2\)O (4:1, v/v) were 4.0×10\(^{-5}\) M, and those of metals in H\(_2\)O were 4.0×10\(^{-4}\) M. In titration experiments, each time a 4×10\(^{-5}\) M solution of AR was filled in a quartz optical cell of 1 cm optical path length, and the ion stock solutions were added into the quartz optical cell gradually by using a micropipette. During fluorometric titration, excitation was provided at 563 nm, and emission was collected from 572 to 680 nm.

Synthesis of 2: Rhodamine-B hydrazide (2) were synthesized according to literature methods.\(^1\)
Synthesis of NAR. NAR has been synthesized by similar diazocoupling and condensation reactions starting from 2-formyl-1-naphthol instead of salicylaldehyde. 1H NMR (400 MHz, CDCl$_3$, Si(CH$_3$)$_4$, J (Hz), δ(ppm)): 12.78 (1H, s, -OH), 9.05 (1H, s, -CH=N), 8.84 (1H, d, J=8.28 Hz), 8.42 (1H, d, J=8.36 Hz), 8.19 (2H, d, J=8.44 Hz), 7.99 (3H, t, J=8.48 Hz), 7.71(1H, s), 7.66 (1H, t, J=7.24 Hz), 7.51 (3H, m), 7.16 (1H, d, J=6.88 Hz), 6.52 (4H, dd, J= 2.28 & 8.84 Hz), 6.27(2H, dd, J= 2.24 & 2.28 Hz), 4.41 (2H, q, J=7.16 Hz), 3.32 (8H, q, J=7.00 Hz, -NCH$_2$CH$_3$), 1.39 (3H, t, J= 6.00 Hz), 1.31 (12H, t, J= 7.00 Hz, -NCH$_2$CH$_3$). TOF MS ES$^+$, m/z = 787.3596, calc. for C$_{48}$H$_{46}$N$_6$O$_5$=786.9284.

Effect of pH: To study the practical applicability, the effects of pH on the fluorescence response of sensor AR to Sn$^{4+}$ was investigated. As shown in Figure S15 the fluorescence responses of AR without and with Sn$^{4+}$ ions as a function of pH. Experimental results show that for free AR, at acidic conditions (pH <5), an obvious off-on fluorescence appeared due to the formation of the open-ring state because of the strong protonation. In the pH range from 4.5 to 9.0, little fluorescence signal (excited at 563 nm) could be observed for free AR, suggesting that the molecules prefer the spirocyclic form. Upon the addition of Sn$^{4+}$ ions, there was an obvious fluorescence off-on change of AR under different pH values and the pH-control emission measurements revealed that AR could respond to Sn$^{4+}$ ions in the pH range from 5 to 9 with little changes of the fluorescent intensity, suggesting that the AR facilitates quantification of the concentration of Sn$^{4+}$ ions in aqueous solution in a wide pH range. Considering that most samples for Sn$^{4+}$ ions analysis were neutral, therefore, the media for Sn$^{4+}$ ions quantification was then buffered at pH 7.
Cell Line and Cell Culture. In this work, RAW 264.7 macrophages were obtained from NCCS, Pune, India and maintained in DMEM containing 10% (v/v) fetal calf serum and antibiotics in a CO₂ incubator. Frozen Human colorectal carcinoma cell line HCT 116 (ATCC : CCL-247) were obtained from the American Type Culture Collection (Rockville, MD, USA). All cell line were maintained in Dulbecco's modified Eagle's medium (DMEM, Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% fetal bovine serum (Invitrogen), penicillin (100 μg/mL), and streptomycin (100 μg/mL). Cells were initially propagated in 25 cm² tissue culture flask in an atmosphere of 5% CO₂ and 95% air at 37°C humidified air till 70- 80% confluency.

Confocal Imaging Study of Cells. For imaging studies, RAW 264.7, 1 ×10⁻⁵ cells in 150 μL of medium, were seeded on sterile Poly L lysine coated coverslip of 12 mm diameter kept in a sterile 35 mm covered Petri dish and incubated overnight in a CO₂ incubator at 37 °C. Next day, cells were washed with PBS (pH 7.4) for 10 min at room temperature and washed again. The cells were permeabilized with 0.1% saponin for 10 min followed by incubation with 20 μM SnCl₄ dissolved in 100 μL DMEM at 37 °C for 1 h in a CO₂ incubator and observed under Andor spinning disk confocal microscope with excitation at 561 nm monochromatic laser beam. Images were recorded at emission wavelength between 630 and 650 nm. Metal treatment was followed by incubation in 10 μM probe in DMEM. After each treatment cells were washed three times with phosphate buffered saline (pH 7.4) to remove excess metal or probe. Again images were captured using EMCCD camera. In a separate coverslip undergoing the same treatment the cells were then treated with 30 μM of Na₂S solution for 1 h; the cells were washed with PBS three times to remove free compound and ions before analysis.
Prior to microscopic imaging, cells were fixed using 4% paraformaldehyde in PBS and washed, then all the solutions were aspirated and mounted on slides in a mounting medium containing DAPI (1 μg/mL) and stored in dark till the microscopic images are acquired.

MTT Cell Viability Assay. The cell viability was determined using a modified MTT assay. HCT cells were plated in 96-well micro assay culture plates (approximately 1×10^4 cells per well) and grown overnight at 37°C in a CO$_2$ incubator. To check the cytotoxic effect of AR, HCT 116 cells were seeded at tissue culture plate and incubated for 24 h at 37°C in CO$_2$ incubator. After incubation, 150μl of AR solution (0, 15, 25, 50, 75, and 100 μM), prepared in DMEM, was added to cells and the cultures were incubated for 24 hours. Solvent control samples (cells treated with DMSO in DMEM), no cells and cells in DMEM without any treatment were also included in the study. Four hours before the termination of experiment the growth media was removed, and 100μl DMEM containing MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (5 mg/ml) was added to the cells and incubated in CO$_2$ incubator at 37°C in dark for 4 hours. After incubation, the purple colored formazan produced in the cells appeared as dark crystals in the bottom of the wells. The insoluble colored formazan product was solubilized in DMSO producing a purple solution, and its absorbance was measured in a microtiter plate reader (Perkin-Elmer) at 570 nm. The assay was performed in triplicate for each concentration of AR, SnCl$_4$ and AR–SnCl$_4$ complex. The OD value of wells containing only DMEM medium was subtracted from all readings to get rid of the background influence. Data analysis and calculation of standard deviation was performed with Microsoft Excel 2007 (Microsoft Corporation).
Calculation for Association Constant Using Emission Titration Data. From the fluorescence titration data the association constant (K_a) for the formation of respective complex AR-Sn^{4+} was calculated by nonlinear curve fitting procedure. The non linear curve fitting was done using the following equation \(^2\)

\[
I = I_0 + \frac{I_{lim} - I_0}{2C_H}\left[C_H + C_G + \frac{1}{K_a} - \left(C_H + C_G + \frac{1}{K_a}\right)^2 - 4C_HC_G\right]^{1/2}
\]

where I_0, I, and I_{lim} are the respective emission intensity of free AR, AR present in the form of $[\text{AR-Sn}^{4+}]$ in the complex, and AR in presence of excess amounts of Sn^{4+} ions where the emission intensity reaches a limiting value. C_H and C_G are corresponding concentrations of host and cationic guest; K_a is the binding constant. The binding constant (K_a) and correlation coefficients (R) were obtained from a non-linear least-square analysis of I vs. C_H and C_G.

Detection Limit Calculation. The detection limit was calculated using emission titration data. The fluorescence emission spectrum of AR was measured by ten times, and the standard deviation of blank measurement was achieved. To gain the slope, the ratio of the fluorescence intensity at 582 nm was plotted as a concentration of Sn^{4+}. So the detection limit was calculated with the following equation \(^3\)

\[
\text{detection limit} = 3S_{bl}/S \quad (2)
\]

where S_{bl} is the standard deviation of blank measurement and S is the slope of the calibration curve.
Computational Methods. Full geometry optimizations were carried out using the density functional theory (DFT) method at the B3LYP \(^4\) level for the receptor (AR) and its Sn(IV) complex. All elements except Sn were assigned 6-31+G(d) basis set. The LANL2DZ basis set with effective core potential (ECP) set of Hay and Wadt \(^5\) was used for Sn. The vibrational frequency calculations were performed to ensure that the optimized geometries represent the local minima and there were only positive eigen values. Vertical electronic excitations based on B3LYP optimized geometry of the compounds were computed using the time-dependent density functional theory (TDDFT) formalism\(^6\) in acetonitrile using conductor-like polarizable continuum model (CPCM)\(^7\). All calculations were performed with Gaussian09 program package\(^8\) with the aid of the Gauss View visualization program.
2. 1H NMR spectrum of AR (400 MHz, CDCl$_3$):

Figure S1: 1H NMR spectrum of AR in CDCl$_3$ solution.
3. 13C NMR spectrum of AR (400 MHz, CDCl$_3$):

Figure S2: 13C NMR spectrum of AR in CDCl$_3$ solution.
4. TOF MS ES+ Mass Spectrum of AR:

Figure S3: Mass spectrum of AR.
5. TOF MS ES+ spectrum of AR in the presence SnCl$_4$.5H$_2$O:

Figure S4: Mass spectrum of AR-Sn complex.
6. 1H NMR spectrum of NAR (400 MHz, CDCl$_3$):

Figure S5: 1H NMR spectrum of NAR in CDCl$_3$ solution.
7. TOF MS ES+ Mass Spectrum of NAR:

Figure S6: Mass spectrum of NAR.
8. TOF MS ES+ spectrum of NAR in the presence SnCl$_4$.5H$_2$O:

Figure S7: Mass spectrum of NAR-Sn complex.
9. Job’s plot and association constant graph for AR-Sn⁴⁺:

![Graph A](image1.png) ![Graph B](image2.png)

Figure S8. (A) Fluorescence Job’s plot for AR with Sn⁴⁺ in EtOH–water (4: 1, v/v; 10 mM, HEPES buffer, pH = 7.4, ([H] = [G] = 4× 10⁻⁵ M). (B) Nonlinear curve fitting of the fluorescence titration data for AR (c = 4× 10⁻⁵ M) with Sn⁴⁺ (c = 4× 10⁻⁴ M) in EtOH / H₂O (4 : 1, v/v, 10 mM HEPES buffer, pH = 7.4).

10. FTIR spectra for AR and AR-Sn⁴⁺:

![FTIR A](image3.png) ![FTIR B](image4.png)

Figure S9. FTIR spectra of both (A) AR and (B) AR-Sn⁴⁺.

S16
11. Competitive experiments of AR:

![Figure S10](image)

Figure S10. Fluorescence response of AR (c= 4× 10^{-5} M) to 4 equiv. addition of Sn^{4+} (c= 4× 10^{-4} M) and 10 equiv. of other metal ions (c= 4× 10^{-4} M) [the red bar portion] and to the mixture of 10 equiv. of other metal ions with 4 equiv. addition of Sn^{4+} [the black bar portion]. [Metal ions from 1 to 21: Sn^{4+}, Li^{+}, Na^{+}, K^{+}, Ca^{2+}, Mg^{2+}, Sr^{2+}, Ba^{2+}, Cr^{3+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Co^{2+}, Cu^{2+}, Ni^{2+}, Zn^{2+}, Cd^{2+}, Hg^{2+}, Pb^{2+}, Ag^{+} and Al^{3+}].

12. UV-vis Bar Diagram of AR in presence of various metal ions :

![Figure S11](image)

Figure S11. Change in the absorption spectrum of receptor AR [c = 4× 10^{-5} M, EtOH / H_{2}O = 4:1, v/v, 10 mM HEPES buffer, pH = 7.4] with respective metal cations (c = 4× 10^{-4} M, left to right- Sn^{4+}, AR, Li^{+}, Na^{+}, K^{+}, Ca^{2+}, Mg^{2+}, Sr^{2+}, Cr^{3+}, Ba^{2+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Co^{2+}, Cu^{2+}, Ni^{2+}, Zn^{2+}, Cd^{2+}, Hg^{2+}, Pb^{2+}, Ag^{+} and Al^{3+}).
13. Visual and fluorescence photographic image of AR in presence of different metal ions:

![Image](https://example.com/image)

Figure S12: The Visible color (top) and fluorescence changes (bottom) of receptor AR in EtOH–H\(_2\)O solution (EtOH : H\(_2\)O = 4 : 1, v/v, 10 mM HEPES buffer, pH = 7.4) upon addition of various metal ions.

14. Reversibility Study:

![Graphs](https://example.com/graphs)

Figure S13: (A) Changes in the fluorescence spectra of AR–Sn complex in presence of different anions. (B) Change in fluorescence spectra of AR-Sn complex (c = 4 x 10\(^{-5}\) M) in EtOH–H\(_2\)O solution (EtOH : H\(_2\)O = 4 : 1, v/v, 10 mM HEPES buffer, pH = 7.4) upon addition of Na\(_2\)EDTA (c = 4 x 10\(^{-4}\) M).
15. Absorption and emission spectra of NAR in presence of Sn$^{4+}$ ions:

![Absorption and Emission Spectra](image)

Figure S14: (A) Change in the absorption spectrum of receptor NAR ($c = 4\times 10^{-5}$ M, EtOH / H$_2$O = 4 : 1, v/v, 10 mM HEPES buffer, pH = 7.4) upon addition of increasing amounts of Sn$^{4+}$ ions ($c = 4\times 10^{-4}$ M). (B) Change in the emission spectra of ligand NAR ($c = 4\times 10^{-5}$ M, EtOH / H$_2$O = 4 : 1, v/v, 10 mM HEPES buffer, pH = 7.4, $\lambda_{ext}=563$ nm) upon addition of Sn$^{4+}$ ions ($c = 4\times 10^{-4}$ M).

16. The effect of pH on the fluorescence intensity of AR and AR-Sn$^{4+}$:

![Fluorescence Intensity vs pH](image)

Figure S15: Fluorescence intensity of free chemosensor AR and in the presence of 1 equiv. Of Sn$^{4+}$ in aq. EtOH (EtOH : H$_2$O = 4 : 1, v/v, 10 mM HEPES buffer, $p^H=7.4$) with different p^H conditions.
17. DFT Study:

Figure S16. Contour plots of some selected MOs of the sensor AR.

Figure S17. Contour plots of some selected MOs of the AR-Sn^{4+} complex.
Table S1. Selected vertical electronic transitions of AR calculated by TDDFT/CPCM method

<table>
<thead>
<tr>
<th>$E_{\text{excitation}}$ (eV)</th>
<th>$\lambda_{\text{excitation}}$ (nm)</th>
<th>Osc. Strength (f)</th>
<th>Key transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9189</td>
<td>424.8</td>
<td>0.1017</td>
<td>(95%)HOMO→LUMO+1</td>
</tr>
<tr>
<td>2.9998</td>
<td>413.3</td>
<td>0.7236</td>
<td>(91%)HOMO-2→LUMO</td>
</tr>
<tr>
<td>3.4583</td>
<td>358.5</td>
<td>0.7473</td>
<td>(93%)HOMO-5→LUMO</td>
</tr>
<tr>
<td>3.4583</td>
<td>348.7</td>
<td>0.4472</td>
<td>(94%)HOMO-2→LUMO+1</td>
</tr>
<tr>
<td>4.1967</td>
<td>295.4</td>
<td>0.2224</td>
<td>(72%)HOMO-5→LUMO+1</td>
</tr>
<tr>
<td>4.5866</td>
<td>270.3</td>
<td>0.1226</td>
<td>(79%)HOMO-6→LUMO+1</td>
</tr>
</tbody>
</table>

Table S2. Selected vertical electronic transitions of AR-Sn complex calculated by TDDFT/CPCM method

<table>
<thead>
<tr>
<th>$E_{\text{excitation}}$ (eV)</th>
<th>$\lambda_{\text{excitation}}$ (nm)</th>
<th>Osc. Strength (f)</th>
<th>Key transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3236</td>
<td>533.6</td>
<td>0.0445</td>
<td>(75%)HOMO→LUMO</td>
</tr>
<tr>
<td>2.9698</td>
<td>417.5</td>
<td>0.2197</td>
<td>(81%)HOMO-1→LUMO</td>
</tr>
<tr>
<td>3.0652</td>
<td>404.5</td>
<td>0.1047</td>
<td>(77%)HOMO-2→LUMO</td>
</tr>
<tr>
<td>3.2196</td>
<td>385.1</td>
<td>0.9060</td>
<td>(31%)HOMO-1→LUMO+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(31%)HOMO-1→LUMO+2</td>
</tr>
<tr>
<td>3.3106</td>
<td>374.5</td>
<td>0.2656</td>
<td>(65%)HOMO-2→LUMO+2</td>
</tr>
<tr>
<td>3.5785</td>
<td>346.5</td>
<td>0.2527</td>
<td>(79%)HOMO-4→LUMO+1</td>
</tr>
<tr>
<td>3.6560</td>
<td>339.1</td>
<td>0.3429</td>
<td>(76%)HOMO-5→LUMO</td>
</tr>
</tbody>
</table>

S21
18. MTT assay:

Figure S18. MTT assay to determine the cytotoxic effect of Probe AR and AR-Sn complex on HCT cells.
19. References:

8. Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
M.; Rega, N. Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;
Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.