Supporting Information

Cerium(III)-catalyzed regioselective coupling of 2-hydroxychalcones and polyphenols: an efficient domino approach towards synthesis of novel dibenzo-2,8-dioxabicyclo[3.3.1]nonanes

Nemai Chand Ganguly,* Sushmita Roy, Pallab Mondal

Department of Chemistry, University of Kalyani, Kalyani-741235, India;
Email: nemai_g@yahoo.co.in

Table of Contents

S1
1. General Information S2
II. Typical experimental procedure for the synthesis of 3a S2
III. Characterization of compounds 3a-3h S2-S5
IV. Typical experimental procedure for the synthesis of 4a S5
V. Characterization of compounds 4a, 4b, 4g-4j and 5 S5-S7
VI. Typical experimental procedure and characterization of O-allylation of the bis-bicyclized product 4a S7
VII. Typical experimental procedure and characterization of Claisen rearrangement of O-allylated bis-2,8-dioxabicyclo[3.3.1]nonane 4a S8
VIII. NMR spectra copies S9-S29
IX. AM1 optimized structures of 4a and 4a’ and 4a” S30
X. References S30
I. General Information: All chemical reactants were obtained from commercial sources and used without further purification. IR spectra were recorded on Perkin-Elmer FTIR L120-000A. 1H NMR and 13C NMR spectra were recorded on a Bruker DPX-400 (400 MHz) spectrometer in CDCl$_3$/DMSO-d_6 with TMS as internal standard (chemical shift in δ). Chemical shifts of common trace impurities (CDCl$_3$, ppm) in some samples: H$_2$O, 1.56; CHCl$_3$, 7.26 and that of (DMSO-d_6, ppm): H$_2$O, 2.50; solvent residual peaks \sim3.35. Applied Biosystems MDS Sciex API 3200 and QTOF micro™ were used for recording mass spectra of the compounds. AM1 calculations are done using M. J. Frisch et al Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford CT, 2004 software. Silica gel (60-120 mesh, Spectrochem, India) was used for column chromatography. Melting points were measured by open capillary method in metal bath, and are uncorrected. Light petrol used for chromatographic experiments refers to the fraction boiling at 60-80 °C.

II. Typical experimental procedure for the synthesis of bicyclononane 3a
To a solution of 3-(2-hydroxyphenyl)-1-phenylprop-2-en-1-one (1a) (230 mg, 1.03 mmol) and resorcinol (2a) (114 mg, 1.04 mmol) in acetonitrile (2 mL) were added CeCl$_3$.7H$_2$O (10 mg, 5 mol%) and NaI (4 mg, 5 mol%) and the resulting red coloured solution was heated at reflux for 2 h. After completion of the reaction (TLC monitoring) the cooled reaction mixture was extracted with EtOAc (3X6 mL), washed with water (2X3 mL) and dried (Na$_2$SO$_4$). The crude product obtained after removal of solvent from the combined extract was purified by column chromatography using EtOAc: n-hexane (1:19) as eluent to give a white solid 3a (304 mg, 94%), m.p. 230-232 °C (Lit. 231-232 °C).7b; 1H NMR (400 MHz, CDCl$_3$) δ 7.74 (dd, $J = 8.4$, 1.6 Hz, 2H), 7.48-7.39 (m, 3H), 7.23 (dd, $J = 8$, 1.2 Hz, 1H), 7.14 (dt, $J = 8.4$, 1.6 Hz, 1H), 7.10 (d, $J = 8$ Hz, 1H), 7.03 (d, $J = 8$ Hz, 1H), 6.92 (dt, $J = 8$, 0.8 Hz, 1H), 6.52 (d, $J = 2.4$ Hz, 1H, H-4), 6.41 (dd, $J = 8$, 2.4 Hz, 1H), 4.74 (s, 1H, OH, exchangeable with D$_2$O), 4.04 (t, $J = 2.8$ Hz, 1H, H-9, nonexchangeable with D$_2$O), 2.37 (d, $J = 2.8$ Hz, 2H, H-17s) ppm; 1H NMR (400 MHz, DMSO-d_6) δ 9.41 (s, 1H, OH), 7.70 (d, $J = 6.8$ Hz, 2H), 7.50-7.44 (m, 3H), 7.38 (d, $J = 6.8$ Hz, 1H), 7.19-7.15 (m, 1H), , 7.13 (t, $J = 6.8$ Hz, 1H), 6.96-6.90 (m, 2H), 6.35 (t, $J = 2.4$ Hz, 2H), 4.14 (s, 1H, H-9), 2.36 (s, 2H, H-17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.4, 152.8, 151.8, 141.4, 128.8, 128.4, 128.0, 127.1, 126.9, 125.8, 121.5, 119.1, 116.8, 108.8, 103.8, 98.7 (C-1), 33.6 (C-17/C-9) ppm; 13C NMR (100 MHz, DMSO-d_6) δ 157.1,
152.0, 151.3, 141.2, 128.7, 128.3, 128.0, 127.6 (2C), 127.3, 125.5, 121.3, 117.5, 115.9, 108.8, 102.7, 98.2 (C-1), 32.4 (C-17), 31.9 (C-9) ppm; 13C DEPT NMR (100 MHz, DMSO-d_6) δ CH: 128.7, 128.3, 128.1, 127.6, 127.3, 125.5, 121.3, 115.9, 108.8, 102.6, 31.8 (C-9), CH$_2$: 32.4 (C-17) ppm; IR (KBr): 3209, 3033, 2937, 2850, 1604, 1487, 1115, 755 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{21}$H$_{17}$O$_3$ [M+H]: 317.1177. Found: 317.1172.

Bicyclononane 3b: White solid; m.p. 166-168 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, J = 8 Hz, 2H), 7.27-7.21 (m, 3H), 7.16-7.11 (m, 1H), 7.09 (d, J = 8 Hz, 1H), 7.01 (d, J = 8 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.51 (d, J = 2.4 Hz, 1H), 6.40 (dd, J = 8.4, 2.4 Hz, 1H), 4.68 (s, 1H, O-H), 4.02 (d, J = 2.8 Hz, 1H, H-9), 2.40 (s, 3H), 2.36 (d, J = 3.2 Hz, 2H, H-17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.4, 152.8, 151.9, 138.7, 138.5, 129.0, 127.9, 127.1, 126.9, 125.7, 121.5, 119.1, 116.8, 108.8, 103.8, 98.8 (C-1), 33.6 (C-17), 33.5 (C-9), 21.2 ppm; IR (KBr): 3260, 2937, 1629, 1604, 1588, 1485, 1118, 757 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{22}$H$_{19}$O$_3$ [M+H]: 331.1334. Found: 331.1328.

Bicyclononane 3c: White solid; m.p. 206-208 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, J = 8.8 Hz, 2H), 7.51-7.44 (m, 2H), 7.40 (t, J = 3.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.21 (d, J = 6.4 Hz, 1H), 7.15-7.11 (m, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 6.40 (dd, J = 8, 2.4 Hz, 1H), 5.11 (s, 2H), 5.00 (s, 1H, O-H), 4.48 (s, 1H, H-9), 4.02 (s, 1H, H-9), 2.40-2.35 (m, 2H, H-17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 159.1, 152.8, 151.9, 136.9, 133.9, 128.6, 128.0, 127.9, 127.5, 127.2, 127.1, 126.9, 121.5, 119.1, 116.7, 114.6, 108.8, 103.8, 98.7 (C-1), 70.1, 33.7 (C-17), 33.6 (C-9) ppm; IR (KBr): 3402, 2869, 1664, 1599, 1584, 1505, 1231, 999, 751 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{28}$H$_{23}$O$_4$ [M+H]: 423.1596. Found: 423.1563.

Bicyclononane 3d: Pinkish white solid; m.p. 156-158 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.15-7.11 (m, 1H), 7.09 (d, J = 8 Hz, 1H), 7.01-6.97 (m, 3H), 6.91 (t, J = 7.6 Hz, 1H), 6.50 (d, J = 2.4 Hz, 1H), 6.40 (dd, J = 8, 2.4 Hz, 1H), 5.11 (s, 1H), 5.00 (s, 1H), 4.67 (s, 1H, O-H), 4.48 (s, 2H), 4.02 (s, 1H, H-9), 2.35 (d, J = 2.8 Hz, 2H, H-17s), 1.84 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 159.1, 155.4, 152.9, 151.9, 140.8, 133.7, 127.9, 127.0, 126.9, 121.4, 119.1, 116.7, 114.5, 112.9, 108.7, 103.8, 98.7 (C-1), 71.8, 33.7 (C-17), 33.6 (C-9), 19.4 ppm; IR (KBr): 3526, 3207,
1626, 1612, 1594, 1457, 1233, 1149, 758 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{25}$H$_{22}$O$_4$ [M+H]: 387.1596. Found: 387.1591.

Bicyclononane 3e: Off-white solid; m.p. 172-174 °C; 1H NMR (400 MHz, CDCl$_3$) δ = 7.15 (dd, $J = 7.6, 1.6$ Hz, 1H), 7.09-7.05 (m, 1H), 7.02 (d, $J = 8.8$ Hz, 1H), 6.86-6.83 (m, 2H), 6.35-6.32 (m, 2H), 4.72 (s, 1H, OH), 3.93 (t, $J = 2.8$ Hz, 1H, H-9), 2.21 (d, $J = 3.2$ Hz, 2H, H-17s), 1.84 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.3, 152.6, 151.6, 127.9, 127.8, 126.9, 121.2, 119.0, 116.4, 108.5, 103.5, 98.1 (C-1), 33.2 (C-17), 31.3 (C-9), 27.3 ppm; IR (KBr): 3480, 3387, 2936, 1619, 1601, 1508, 1142, 757 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{16}$H$_{15}$O$_3$ [M+H]: 255.1021. Found: 255.1016.

Bicyclononane 3f: White solid; m.p. 206-208 °C (Lit. 218-219 °C); 1H NMR (400 MHz, CDCl$_3$) δ 7.37 (dd, $J = 4, 0.8$ Hz, 1H), 7.32 (dd, $J = 4, 1.2$ Hz, 1H), 7.22 (dd, $J = 8, 1.2$ Hz, 1H), 7.15-7.11 (m, 1H), 7.09 (d, $J = 8.4$ Hz, 1H), 7.08-7.05 (m, 1H), 6.99 (d, $J = 8$ Hz, 1H), 6.49 (d, $J = 8$ Hz, 1H), 6.41 (dd, $J = 2.4$ Hz, 1H), 4.70 (s, 1H, OH), 4.05 (t, $J = 2.8$ Hz, 1H, H-9), 2.52 (d, $J = 2.8$ Hz, 2H, H-17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.4, 152.4, 151.4, 144.9, 128.0, 127.9, 127.1, 126.9, 126.6, 126.0, 125.0, 121.7, 118.9, 116.8, 109.0, 103.8, 97.7 (C-1), 33.7 (C-17), 33.5 (C-9) ppm; IR (KBr): 3518, 3434, 2938, 1622, 1599, 1486, 1236, 1105, 706 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{19}$H$_{15}$O$_3$ [M+H]: 323.0742. Found: 323.0703.

Bicyclononane 3g: White solid; m.p. 150-152 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 8.8$ Hz, 2H), 7.42 (d, $J = 8.8$ Hz, 2H), 7.23 (d, $J = 7.2$ Hz, 1H), 7.17-7.12 (m, 1H), 7.10 (d, $J = 8$ Hz, 1H), 7.01 (d, $J = 8$ Hz, 1H), 6.92 (t, $J = 7.2$ Hz, 1H), 6.50 (d, $J = 2.4$ Hz, 1H), 6.42 (dd, $J = 8, 2.4$ Hz, 1H), 4.86 (s, 1H, OH), 4.04 (d, $J = 2.4$ Hz, 1H, H-9), 2.34 (d, $J = 3.2$ Hz, 2H, H-17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 155.6, 152.6, 151.6, 140.0, 134.8, 128.5, 128.0 (2C), 127.4, 127.1, 126.7, 121.7, 118.8, 116.7, 109.0, 103.7, 98.3 (C-1), 33.5 (2C) (C-17 & C-9) ppm; IR (KBr): 3237, 2946, 1600, 1586, 1484, 1227, 1152, 729 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{21}$H$_{16}$ClO$_3$ [M+H]: 351.0788. Found: 351.0732.

Bicyclononane 3h: White solid; m.p. 164-166 °C (Lit. 164-1652 °C); 1H NMR (400 MHz, CDCl$_3$) δ 7.72-7.69 (m, 2H), 7.23 (dd, $J = 7.6, 1.6$ Hz, 1H), 7.16-7.09 (m, 4H), 7.01 (d, $J = 7.6$ Hz, 1H), 6.94-6.90 (m, 1H), 6.50 (d, $J = 2.4$ Hz, 1H), 6.41 (dd, $J = 8.4, 2.4$ Hz, 1H), 4.75 (s, 1H, OH), 4.03 (t, $J = 2.8$ Hz, 1H, H-9), 2.35 (d, $J = 3.2$ Hz, 2H, H-
17s) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 161.8, 155.5, 152.6, 151.7, 137.3, 128.0, 127.8 (d, 3J$_{C-F}$ = 9 Hz), 127.1, 126.7, 121.6, 119.0, 116.7, 115.2 (d, 2J$_{C-F}$ = 21 Hz), 109.0, 103.7, 98.4 (C-1), 33.7 (C-17), 33.5 (C-9) ppm; IR (KBr): 3530, 3252, 2938, 1605, 1506, 1485, 1227, 1119, 755 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{21}$H$_{16}$FO$_3$ [M+H]: 335.1083. Found: 335.1007.

IV. Typical experimental procedure for the synthesis of bisbicyclononane 4a

To a solution of 3-(2-hydroxyphenyl)-1-phenylprop-2-en-1-one (1a) (450 mg, 2.01 mmol) and phloroglucinol (2b) (165 mg, 1.02 mmol) in acetonitrile (2 mL) were added CeCl$_3$.7H$_2$O (10 mg, 5 mol%) and NaI (4 mg, 5 mol%) and the red coloured solution was heated at reflux temperature for 2 h. After completion of the reaction (TLC monitoring) the cooled reaction mixture was extracted with EtOAc (3X8 mL), washed with water (2X3 mL), dried (Na$_2$SO$_4$) and the combined extract was concentrated under reduced pressure. The crude product was purified by column chromatography using EtOAc:light petrol (1:19) as eluent to give a white solid 4a (427 mg, 79%), which was further recrystallized from EtOAc-n-hexane mixture (m.p. 250-252 °C). 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, J = 7.2 Hz, 2H), 7.65 (d, J = 6.4 Hz, 2H), 7.57-7.50 (m, 3H), 7.44-7.35 (m, 4H), 7.25 (d, J = 5.6 Hz, 1H), 7.17 (t, J = 8 Hz, 2H), 7.11 (d, J = 8 Hz, 1H), 7.04 (d, J = 8 Hz, 1H), 6.95-6.89 (m, 2H), 6.12 (s, 1H), 4.98 (s, 1H, OH), 4.45 (t, J = 2.8 Hz, 1H, H-9/ H-9'), 4.42 (t, J = 2.8 Hz, 1H, H-9/H-9'), 2.42 (dd, J = 13.2, 3.2 Hz, 1H, H-17/H-17'), 2.26 (dd, J = 13.2, 3.2 Hz, 1H, H-17/H-17'), 2.20 (dd, J = 13.2, 3.2 Hz, 1H, H-17/H-17'), 2.15 (dd, J = 13.2, 3.2 Hz, 1H, H-17/H-17') ppm; 13C NMR (100 MHz, CDCl$_3$) δ 152.5, 152.1, 151.5, 151.0, 149.4, 141.4, 141.3, 129.0, 128.7, 128.3, 128.2, 127.7, 127.4, 127.1, 126.1, 125.8, 121.4, 120.9, 116.3, 107.2, 106.9, 99.1 (C-1/C-1'), 98.8 (C-1/C-1'), 96.8, 60.7, 33.4 (C-17/C-17'), 32.8 (C-17/C-17'), 26.7 (C-9/C-9'), 21.2 (C-9/C-9), 14.2 ppm; IR (KBr): 3411, 3034, 2948, 1614, 1485, 1237, 1111, 1070, 751 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{36}$H$_{27}$O$_5$ [M+H]: 539.1858. Found: 539.1875.

Bisbicyclononane 4b: White solid; m.p. 256-258 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, J = 8 Hz, 2H), 7.53 (d, J = 8 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.21-7.14 (m, 4H), 7.09 (d, J = 8 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 6.94-6.89 (m, 2H), 6.10 (s, 1H), 4.88 (s, 1H, OH), 4.42 (t, J = 2.8 Hz, 2H, H-9 & 9'), 2.47 (s, 3H), 2.36 (s, 3H), 2.42-2.13 (m, 4H, H-17s & 17's) ppm; 13C NMR (100 MHz,
Bisbicyclononane 4g: White solid; m.p. 284-286 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 8.8 Hz, 2H), 7.20-7.15 (m, 3H), 7.09 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 6.96-6.90 (m, 2H), 6.10 (s, 1H), 5.00 (s, 1H, O₉/H₉), 4.45 (s, 1H, H-9/H-9), 4.39 (s, 1H, H-9/H-9), 2.40-2.10 (m, 4H, H-17/H-17) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 151.8, 151.4, 150.9, 149.3, 139.9, 139.8, 135.0, 134.7, 128.5, 128.0, 127.9, 127.8, 127.7 (2C), 127.3, 127.1, 126.8, 121.6, 121.0, 116.3, 107.2, 106.9, 98.7(C-1/C-1'), 98.4 (C-1/C-1), 96.8, 33.3 (C-17/C-17), 32.7 (C-17/C-17), 26.7 (C-9/C-9), 26.6 (C-9/C-9) ppm; IR (KBr): 3315, 3039, 2975, 1627, 1484, 1458, 1234, 1116, 1014, 754 cm⁻¹. HRMS (ESI) m/z: Calcd. for C₃₈H₃₀O₅Na [M+Na]: 589.1991. Found: 589.1991.

Bisbicyclononane 4h: White solid; m.p. above 290 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.4, 5.6 Hz, 2H), 7.62 (dd, J = 8.4, 5.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.24-7.16 (m, 6H), 7.09 (d, J = 8.4 Hz, 2H), 7.03 (t, J = 8.8 Hz, 1H), 6.96-6.85 (m, 2H), 6.11 (s, 1H), 4.98 (s, 1H, O₉/H₉), 4.45 (s, 1H, H-9/H-9), 4.39 (s, 1H, H-9/H-9), 2.40 (dd, J = 13.2, 3.2 Hz, 1H, H-17/H-17'), 2.24 (dd, J = 13.2, 2.8 Hz, 1H, H-17/H-17'), 2.18 (dd, J = 13.6, 3.2 Hz, 1H, H-17/H-17'), 2.13 (dd, J = 13.2, 2.8 Hz, 1H, H-17/H-17') ppm; ¹³C NMR (100 MHz, DMSO-d₆) δ 162.4 (d, ¹J_C-F = 245 Hz), 162.2 (d, ¹J_C-F = 247 Hz), 153.1, 151.7, 151.4, 150.3, 148.4, 137.5, 137.3, 128.0 (d, ³J_C-F = 9Hz), 127.8 (d, ³J_C-F = 9 Hz), 127.6, 127.5, 127.4, 127.0, 121.1, 120.9, 115.8, 115.1 (d, ²J_C-F = 21 Hz), 115.0 (d, ²J_C-F = 22 Hz), 114.9, 107.1, 104.9, 98.3 (C-1/C-1'), 98.0 (C-1/C-1'), 95.7, 32.0 (C-17/C-17'), 31.0 (C-17/C-17), 25.9 (C-9/C-9'), 25.8 (C-9/C-9') ppm; IR (KBr): 3315, 3039, 2975, 1627, 1484, 1458, 1234, 1116, 1014, 754 cm⁻¹. HRMS (ESI) m/z: Calcd. for C₃₆H₂₅O₅F₂ [M]: 607.1092. Found: 607.1094.

Bisbicyclononane 4i: White solid; m.p. 242-244 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.66 (m, 4H), 7.54-7.52 (m, 4H), 7.42 (d, J = 7.6 Hz, 1H), 7.20-7.17 (m, 3H), 7.09 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 6.94 (t, J = 7.2 Hz, 2H), 6.11 (s, 1H), 5.02 (s, 1H,
OH), 4.45 (s, 1H, H-9/H-9), 4.39 (s, 1H, H-9/H-9), 2.40-2.13 (m, 4H, H-17s & H-17's) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 153.6, 152.1, 151.8, 150.7, 148.8, 141.0, 140.8, 132.0, 131.8 (2C), 131.7, 128.6, 128.5, 128.3, 128.1, 128.0, 127.4, 122.9, 122.6, 121.6, 116.3, 107.6, 105.5, 98.9 (C-1/C-1'), 98.8 (C-1/C-1), 98.5, 96.3, 32.3 (C-17/C-17'), 31.5 (C-17/C-17'), 26.3 (C-9/C-9') ppm; IR (KBr): 3309, 3038, 2938, 1627, 1485, 1234, 1115, 1071, 1010, 753 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{36}$H$_{25}$O$_5$Br$_2$ [M+H]: 695.0068. Found: 695.0063.

Bisbicyclononane 4j: White solid; m.p. 240-242 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.33 (dt, J = 7.6, 1.2 Hz, 2H), 7.10-7.05 (m, 2H), 6.90-6.82 (m, 4H), 5.90 (s, 1H), 4.78 (s, 1H, OH), 4.39 (t, J = 2.8 Hz, 1H, H-9/H-9'), 4.30 (t, J = 2.8 Hz, 1H, H-9/H-9'), 2.33-2.18 (m, 2H, H-17/H-17'), 2.13-1.94 (m, 6H, H-17/H-17's & four CH$_2$CH$_3$ protons), 1.25 (t, J = 7.6 Hz, 3H), 1.04 (t, J = 7.6 Hz, 3H,) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 152.5, 152.2, 151.0, 149.0, 127.6, 127.5, 127.4, 127.3, 120.8, 120.6, 116.1, 116.0, 107.1, 107.0, 99.9 (2C) (C-1 & C-1'), 96.0, 33.3 (C-17/C-17'), 33.0 (C-17/C-17), 28.4, 28.3, 26.0 (C-9/C-9'), 25.9 (C-9/C-9), 8.0, 7.9 ppm; IR (KBr): 3409, 2979, 2940, 1623, 1484, 1459, 1234, 1108, 1061, 931, 864, 749 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{28}$H$_{27}$O$_5$ [M+H]: 443.1858. Found: 443.1875.

Bicyclononane 5: White solid; m.p. 130-132 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.40 (d, J = 7.6 Hz, 1H), 7.36 (dd, J = 5.2, 0.8 Hz, 1H), 7.31 (d, J = 3.6 Hz, 1H), 7.15-7.11 (m, 1H), 7.07-7.04 (m, 1H), 6.99 (d, J = 8 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.07 (d, J = 2 Hz, 1H, H-4), 5.82 (d, J = 2.4 Hz, 1H, H-6), 5.09 (s, 1H, OH of C-5), 4.81 (s, 1H, OH of C-7), 4.43 (d, J = 2.4 Hz, 1H, H-9), 2.45 (d, J= 2.8 Hz, 2H, H-17) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 156.5, 154.6, 152.8, 151.8, 145.4, 127.9, 127.5, 127.3, 126.8, 125.7, 124.8, 121.1, 116.1, 105.6, 97.7 (C-1), 96.6, 95.3, 33.7 (C-17), 26.5 (C-9) ppm; IR (KBr): 3604, 3533, 3423, 3343, 1619, 1484, 1464, 1230, 1140, 1017, 702 cm$^{-1}$. HRMS (ESI) m/z: Calcd. for C$_{19}$H$_{16}$O$_4$S [M+H]: 339.0691. Found: 339.0703.

VI. O-allylation of the bisbicyclononane 4a to 6

To a solution of 4a (150mg, 0.358 mmol) in dry acetone (10 mL) were added allyl bromide (65mg, 0.537 mmol) and K$_2$CO$_3$ (200mg, 1.44 mmol). The resulting solution was refluxed in water bath for 10 h (TLC monitoring) and filtered after cooling. The residual solid was extracted with acetone (2X3 mL) and the combined extract and filtrate
was concentrated to give a thick liquid. It was subjected to column chromatography over
silica gel (60-120 mesh) using light petrol-ethyl acetate (19:1) as eluent to afford 6 which
was further recrystallized from EtOAc-\textit{n}-hexane to give a white crystalline solid (153
mg, 95%), m.p. 204-206 \degree C. 1H NMR (400 MHz, CDCl\textsubscript{3}) \textit{\delta} 7.87 (d, \textit{J} = 7.2 Hz, 2H),
7.70 (d, \textit{J} = 7.6 Hz, 2H), 7.59-7.51 (m, 3H), 7.46-7.38 (m, 4H), 7.29 (d, \textit{J} = 7.6 Hz, 1H),
7.23-7.18 (m, 2H), 7.13 (d, \textit{J} = 8 Hz, 1H), 7.07 (d, \textit{J} = 8 Hz, 1H), 6.96-6.92 (m, 2H), 6.26
(s, 1H), 6.21-6.12 (m, 1H), 5.52 (d, \textit{J} = 17.2 Hz, 1H), 5.37 (d, \textit{J} = 10.4 Hz, 1H), 4.61-4.55
(m, 2H), 4.54-4.41 (m, 2H, \textit{H-9} & \textit{9}/ \textit{H-9}/ \textit{H-9}), 2.43 (dd, \textit{J} = 13.2, 2.8 Hz, 1H, H-17/H-17), 2.26
(dd, \textit{J} = 13.2, 2.8 Hz, 1H, H-17/H-17), 2.23-2.18 (m, 2H, H-17/H-17s) ppm; 13C NMR
(100 MHz, CDCl\textsubscript{3}) \textit{\delta} 154.3, 152.6, 152.1, 151.3, 141.5, 141.3, 133.2, 129.0, 128.7, 128.3,
128.2, 127.7, 127.6, 127.4, 127.1, 126.1, 125.7, 121.3, 120.8, 117.7, 116.3, 108.2, 106.8,
99.0 (C-1/C-1), 98.8 (C-1/C-1), 94.0, 69.1, 33.4 (C-17/C-17), 32.8 (C-17/C-17), 26.7
(C-9/C-9), 26.6 (C-9/C-9) ppm; IR (KBr): 2936, 1622, 1602, 1484, 1237, 1118, 753 cm-1. HRMS (ESI) m/z: Calcd. for C\textsubscript{39}H\textsubscript{31}O\textsubscript{5} [M+H]: 579.2171. Found: 579.2413.

VII. Claisen rearrangement of 6
Compound 6 (100 mg, 0.173 mmol) was added to 1,2-dichlorobenzene (2 mL) and heated
to reflux for 16 h (TLC monitoring). The reaction mixture was cooled and directly
subjected to column chromatography over silica gel (60-120 mesh) using \textit{n}-hexane-ethyl
acetate (9:1) as eluent to afford 7 which was recrystallized from EtOAc-\textit{n}-hexane mixture
to give a white crystalline solid (85 mg, 85%), m.p. 216-218 \degree C; 1H NMR (400
MHz, CDCl\textsubscript{3}) \textit{\delta} 7.88-7.86 (m, 2H), 7.67-7.65 (m, 2H), 7.59-7.50 (m, 3H), 7.47-7.40 (m,
4H), 7.32-7.30 (m, 1H), 7.22-7.18 (m, 2H), 7.13 (d, \textit{J} = 8 Hz, 1H), 7.06 (d, \textit{J} = 8 Hz, 1H),
6.98-6.92 (m, 2H), 6.04-5.94 (m, 1H), 5.47 (s, 1H, O\textit{H}), 5.31 (d, \textit{J} = 17.2 Hz, 1H), 5.23
(d, \textit{J} = 10 Hz, 1H), 4.49 (s, 1H, H-9/H-9'), 4.49 (s, 1H, H-9/H-9), 3.64 (dd, \textit{J} = 16.4, 5.6
Hz, 1H), 3.49 (dd, \textit{J} = 16.4, 6.4 Hz, 1H, H-17/H-17'), 2.44 (dd, \textit{J} = 13.2, 3.2 Hz, 1H, H-
17/H-17'), 2.27 (dd, \textit{J} = 13.6, 2.8 Hz, 1H, H-17/H-17), 2.21 (dd, \textit{J} = 13.2, 2.8 Hz, 1H, H-
17/H-17), 2.16 (dd, \textit{J} = 13.2, 3.2 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl\textsubscript{3}) \textit{\delta} 152.5,
152.1, 151.0, 148.3, 147.6, 141.7, 141.4, 136.8, 129.0, 128.7, 128.3 (2C), 127.8, 127.7 (2
C), 127.4, 127.0, 126.1, 125.7, 121.3, 120.9, 116.9, 116.3 (2 C), 107.5, 106.8, 105.0, 99.0
(C-1/C-1'), 98.8 (C-1/C-1), 33.4 (C-17/C-17'), 32.9 (C-17/C-17), 28.1, 26.8 (2 C) (C-9
&-9') ppm; IR (KBr): 3492 (OH), 2940, 1618, 1459, 1232, 1103, 757 cm⁻¹. HRMS (ESI) m/z: Calcd. for C₃₀H₃₁O₅ [M+H]: 579.2171. Found: 579.2530.
VIII. NMR spectra copies:

1H-NMR of 3a in CDCl$_3$

13C-NMR of 3a in CDCl$_3$
1H-NMR of 3a in DMSO-d_6

13C-NMR of 3a in DMSO-d_6
13C DEPT NMR of 3a in DMSO-d_6

![13C DEPT NMR spectrum](image)

1H-NMR of 3a after D$_2$O exchange in CDCl$_3$

![1H-NMR spectrum](image)
1H-NMR of 3b

13C-NMR of 3b
1H-NMR of 3c

13C-NMR of 3c
1H-NMR of 3d

13C-NMR of 3d
1H-NMR of 3e

13C-NMR of 3e
1H-NMR of 3f

13C-NMR of 3f
1H-NMR of 3g

13C-NMR of 3g
1H-NMR of 3h

13C-NMR of 3h
1H-NMR of 4a

13C-NMR of 4a
1H-NMR of 4b

13C-NMR of 4b
^{1}H-NMR of $4g$

^{13}C-NMR of $4g$
1H-NMR of 4h

13C-NMR of 4h
1H-NMR of 4i

13C-NMR of 4i
1H-NMR of 4j

13C-NMR of 4j
1H-NMR of 5

13C-NMR of 5
1H-NMR of 6

13C-NMR of 6
1H-NMR of 7

13C-NMR of 7
1H-NMR of CDCl$_3$
IX. AM1 optimized structures of 4a and 4a′ and 4a″

X. References: