Highly stereoselective one-pot construction of trisubstituted tetrahydro-β-carboline-fused diketopiperazines: A synthetic route towards cialis analogues

Mouhamad Jida,* Dirk Tourwé and Steven Ballet*

Research Group of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
mouhamad.jida@vub.ac.be and sballet@vub.ac.be

Contents

1. General information.. 1
2. General procedure for the synthesis of THBC-based DKPs (**8a-n**) .. 2
3. Characterization of compounds **8a-o** .. 3
4. NOESY studies of **8a** and **8l** .. 8
5. NMR Spectra... 9-26
5. 2D NMR Spectra (COSY, NOESY, HSQC) and HPLC of **8a** ... 27-30
1. General information

1H and 13C NMR spectra (25°C) were recorded at 250 MHz and 63 MHz on a Bruker Avance
DRX 250 spectrometer or at 500 MHz and 126 MHz respectively on a Bruker Avance II 500
spectrometer. Chemical shifts are in parts per million (ppm). The assignments were made using
one dimensional (1D) 1H and 13C spectra or two-dimensional (2D) HSQC and COSY spectra.
HRMS data was recorded with a Micromass QTOF-micro system. Mass spectra were recorded
with a LCMS-MS triple-quadrupole system. Analytical HPLC was performed on an Agilent 1100
Series system with a Supelco Discovery BIO Wide Pore RP column (25 cm × 4.6 mm, 5 μm).
Flow rates of 1 ml/min were used and detection was done at 215 nm. The solvent system
consisted of 0.1% TFA in water (A) and 0.1% TFA in acetonitrile (B). The gradient consisted of
a 26 min. run from 3% B to 100% B. Flash chromatography was performed with silica gel 60
(Davisil, 0.040-0.063 mm) from Merck. Glass plates with silica gel 60 F254 (Merck) were used
for thin layer chromatography. Visualization of the products on TLC plates was realized using
UV light (254 nm), KMnO$_4$ spray. Melting points were determined on a Büchi B-540 apparatus
and are uncorrected. Reactions were performed using a Biotage® Initiator® Microwave
Synthesizer. All commercial reagents and solvents were used without further purification.
Specific rotations were measured on a polarimeter polartronic M Schmidt-Haensch using a 5 cm
cell in standard conditions (20°C / 589.3 nm$^{\text{air}}$ / 589.44 nm$^{\text{vac}}$).
2. General procedure for one-pot tandem Ugi-4CR/Boc-deprotection/Pictet-Spengler/Cyclisation sequence (8a-n).

In a capped 5 mL microwave-vessel containing a stirring bar, the N-Boc protected (L/D)-tryptophan (0.5 mmol), the aldehyde (0.5 mmol) and the amine (0.5 mmol) were dissolved and mixed in methanol (3 mL). The solution was stirred at room temperature for 30 min. Isocyanide (0.5 mmol) was then added, and the resulting mixture was stirred at room temperature. After 18h, total conversion was determined from LC-MS analysis and the solvent was removed in vacuo. The crude Ugi-4CR product was dissolved in 30% TFA in DCM (3 mL) and the resulting mixture was stirred at room temperature for 3 hours. After completion of the N-Boc deprotection step (monitored by HPLC and LC-MS), the solvent was evaporated in vacuo. Next, the crude deprotected Ugi product was dissolved in a mixture of TFA (1.5 mmol) in DCM (3 mL) and the corresponding aldehyde (0.55 mmol) was then added, and the resulting mixture was stirred overnight at room temperature. Total conversion was observed from HPLC and LC-MS analysis and the solvent was removed under reduced pressure.

The crude Ugi Pictet-Spengler product was dissolved in glacial acetic acid (3 mL) and the reaction vessel was capped. The reaction mixtures was heated at 180°C under microwave irradiation for 80 minutes using the Biotage initiator+ microwave reactor (average effective ramp time =1 min), the power was set at 400 W and the pressure was set at 30 bar (average effective pressure = 5 bar). After completion of the reaction as indicated by LC-MS, the solvent was evaporated under reduced pressure and the residue was dissolved in EtOAc (20 mL). The organic layer was washed with sat. NaHCO₃ (3 X 10 mL), 1N HCl (3 X 10 mL), sat. NaCl (3 X 10 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude products were purified by flash chromatography. The resulting products (8a-n) were isolated in good purity and yields as a single diastereomer. Purity (%) was determined by reversed phase HPLC, using UV detection (215 nM).
3. Characterization of compounds (8a-n).

(6R,12aS)-2-benzyl-6-phenyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8a):

Yield (171 mg, 81%); pale yellow solid; mp= 263-265 °C; [α]D = -30.0 ° (c 0.6, CHCl3); 1H NMR (250 MHz, CDCl3) δ 7.92 (br s, 1H, NH), 7.56 (d, J = 8.0 Hz, 1H), 7.40-7.14 (m, 13H), 7.04 (s, 1H), 4.87 (d, J = 14.75 Hz, 1H), 4.43 (dd, J = 12.0, 4.0 Hz, 1H), 4.34 (d, J = 14.5 Hz, 1H), 4.00 (d, J = 18.25 Hz, 1H), 3.95 (d, J = 18.25 Hz, 1H), 3.62 (dd, J = 16.0, 4.0 Hz, 1H), 2.99 (dd, J = 16.0, 12.0 Hz, 1H); 13C NMR (63 MHz, CDCl3) δ 165.46, 162.07, 137.99, 136.34, 134.74, 129.56, 129.07, 128.96, 128.83, 128.54, 128.33, 126.23, 122.78, 120.13, 118.44, 111.19, 108.95, 52.67, 52.19, 49.45, 48.78, 27.83; TLC: Rf = 0.55 (EtOAc /Hexane 9/1, v/v); rt(HPLC) = 17.20 min; HRMS-ESI (m/z): [M+Na]+ calcd for C27H23N3O2Na444.1682; found 444.1660.

(6R,12aS)-2-methyl-6-phenyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8b):

Yield (121 mg, 70%); brown solid; mp= 288-290 °C; [α]D = -73.3 ° (c 0.5, CHCl3); 1H NMR (250 MHz, CDCl3) δ 8.14 (br s, 1H, NH), 7.53 (d, J = 7.75 Hz, 1H), 7.32-7.12 (m, 8H), 7.06 (s, 1H), 4.32 (dd, J = 11.75, 4.5 Hz, 1H), 4.12 (d, J = 17.5 Hz, 1H), 3.95 (d, J = 17.75 Hz, 1H), 3.55 (dd, J = 15.25, 4.5 Hz, 1H), 3.01-2.89 (m, 1H), 2.96 (s, 3H); 13C NMR (63 MHz, CDCl3) δ 165.46, 161.64, 138.24, 136.36, 129.56, 128.89, 128.78, 126.26, 122.70, 120.06, 118.41, 111.18, 109.07, 52.55, 52.08, 51.42, 33.40, 27.65; TLC: Rf = 0.42 (EtOAc /Hexane 9/1, v/v); rt(HPLC) = 14.22 min; HRMS-ESI (m/z): [M+H]+ calcd for C21H20N3O2 346.1550; found 346.1558.

(6R,12aS)-2-methyl-6-(m-tolyl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8c):

Yield (136 mg, 76%); yellow oil; [α]D = -176.8 ° (c 1, CHCl3); 1H NMR (250 MHz, CDCl3) δ 7.88 (br s, 1H, NH), 7.55 (d, J = 8.0 Hz, 1H), 7.33-7.10 (m, 7H), 7.03 (s, 1H), 4.39 (dd, J = 12.5, 4.5 Hz, 1H), 4.15 (d, J = 17.5 Hz, 1H), 3.98 (d, J = 17.5 Hz, 1H), 3.57 (dd, J = 15.0, 4.5 Hz, 1H), 3.04-2.91 (m, 1H), 3.00 (s, 3H), 2.29 (s, 3H); 13C NMR (63 MHz, CDCl3) δ 165.53, 161.56, 138.83, 138.08, 136.31, 129.84, 129.71, 129.31, 128.81, 125.96, 122.70, 120.06, 118.43, 111.15, 109.12, 52.60, 52.06, 51.48, 33.40, 27.67, 21.38; TLC: Rf = 0.51 (EtOAc /Hexane 9/1, v/v); rt(HPLC) = 14.85 min; HRMS-ESI (m/z): [M+H]+ calcd for C22H22N3O2 360.1707; found 360.1695.
(6R,12aS)-2-methyl-6-(naphthalen-2-yl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8d):

Yield (141 mg, 71%); brown solid; mp= 165-167 °C; [α]D = -87.5 ° (c 0.7, CHCl3); 1H NMR (250 MHz, CDCl3) δ 8.28 (br s, 1H, NH), 7.78-7.70 (m, 1H), 7.62-7.55 (m, 3H), 7.50-7.39 (m, 3H), 7.33-7.15 (m, 5H), 4.34 (dd, J = 12.0, 4.5 Hz, 1H), 4.05 (d, J = 17.5 Hz, 1H), 3.86 (d, J = 17.5 Hz, 1H), 3.57 (dd, J = 15.5, 4.5 Hz, 1H), 3.00-2.90 (m, 1H), 2.86 (s, 3H); 13C NMR (63 MHz, CDCl3) δ 165.40, 161.76, 136.43, 135.73, 133.32, 132.97, 129.73, 128.91, 128.14, 127.95, 127.61, 126.76, 126.63, 126.33, 126.22, 122.68, 120.04, 118.45, 111.31, 109.14, 52.54, 52.24, 51.35, 33.28, 27.69; TLC: Rf = 0.47 (EtOAc / Hexane 8/2, v/v); rt(HPLC) = 15.76 min; HRMS-ESI (m/z): [M+H]+ calcd for C23H22N2O3 396.1707; found 396.1706.

(6R,12aS)-6-isobutyl-2-methyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8e):

Yield (119 mg, 73%); yellow oil; [α]D = -29.2 ° (c 0.5, CHCl3); 1H NMR (250 MHz, MeOD) δ 7.42 (d, J = 8.75 Hz, 1H), 7.29 (d, J = 8.75 Hz, 1H), 7.10-6.94 (m, 2H), 6.43 (d, J = 16.5 Hz, 1H), 6.21 (dd, J = 16.5, 6.75 Hz, 1H), 4.43 (br s, 1H), 3.49-3.11 (m, 5H), 2.58-2.25 (m, 2H), 2.50 (s, 3H), 1.16 (d, J = 6.5 Hz, 3H), 1.15 (d, J = 6.5 Hz, 3H); 13C NMR (126 MHz, MeOD) δ 167.40, 165.77, 137.00, 136.39, 135.25, 128.41, 121.69, 118.65, 118.17, 115.59, 110.00, 105.29, 56.42, 50.01, 32.53, 31.58, 28.69, 21.43; TLC: Rf = 0.32 (EtOAc / Hexane 9/1, v/v); rt(HPLC) = 13.04 min; HRMS-ESI (m/z): [M+H]+ calcd for C19H22N2O3 326.1863; found 326.1871.

(6R,12aS)-6-(benzo[d][1,3]dioxol-5-yl)-2-methyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8f):

Yield (133 mg, 68%); pale yellow solid; mp= 291-293 °C (lit. mp = 287-289 °C); [α]D = -297.8 ° (c 1, CHCl3); 1H NMR (250 MHz, CDCl3) δ 8.00 (br s, 1H, NH), 7.53 (d, J = 7.5 Hz, 1H), 7.33-7.12 (m, 3H), 6.97 (s, 1H), 6.81 (s, 1H), 6.70 (s, 2H), 5.92 (s, 2H), 4.34 (dd, J = 12.0, 4.5 Hz, 1H), 4.14 (d, J = 17.5 Hz, 1H), 3.98 (d, J = 17.5 Hz, 1H), 3.55 (dd, J = 15.5, 4.5 Hz, 1H), 2.99 (s, 3H), 2.96-2.89 (m, 1H); 1H NMR (500 MHz, DMSO-d6) δ 11.02 (br s, 1H, NH), 7.47 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.08 (s, J = 7.5 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.85-6.80 (m, 2H), 6.74 (s, 1H), 6.58 (d, J = 8.0 Hz, 1H), 5.97 (d, J = 7.0 Hz, 2H), 4.22 (d, J = 18.0 Hz, 1H), 4.05 (dd, J = 11.5, 4.0 Hz, 1H), 4.01 (d, J = 18.0 Hz, 1H), 3.24 (dd, J = 15.5, 4.0 Hz, 1H), 2.93 (dd, J = 15.5, 11.5 Hz, 1H), 2.82 (s, 3H); 13C NMR (63 MHz, CDCl3) δ 165.46, 161.53, 148.15, 148.05, 136.32, 132.05, 129.71, 126.23, 122.77, 122.48, 120.10, 118.45, 111.15, 109.14, 108.31, 101.36, 52.42, 51.81, 51.47, 33.40, 27.60; TLC: Rf = 0.45 (EtOAc / Hexane 8/2, v/v); rt(HPLC) = 14.21 min; HRMS-ESI (m/z): [M+Na]+ calcd for C22H19N3O4Na 412.1268; found 412.1284.

(6S,12aR)-6-(benzo[d][1,3]dioxol-5-yl)-2-methyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione{6-epi-Cialis } (8g):

Yield (142 mg, 73%); off-white solid; mp= 289-291 °C (lit.1 mp = 287-288 °C); [α]D = +288.4 ° (c 1, CHCl3) {lit.20d [α]D28 = +278 ° (c 1.03, CHCl3)};1H NMR (500 MHz, DMSO-d6) δ 11.02 (br s, 1H, NH), 7.47 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.85-6.81 (m, 2H), 6.75 (s, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.97 (d, J = 6.0 Hz, 2H), 4.22 (d, J = 18.0 Hz, 1H), 4.06 (dd, J = 12.0, 4.0 Hz, 1H), 4.01 (d, J = 18.0 Hz, 1H), 3.24 (dd, J = 15.5, 4.0 Hz, 1H), 2.93 (dd, J = 15.5, 12.0 Hz, 1H), 2.82 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 165.13, 162.74, 148.11, 147.73, 136.75, 133.38, 130.83, 126.39, 122.19, 122.15, 119.36, 118.59, 111.80, 108.83, 108.62, 107.99, 101.73, 52.49, 51.33, 51.15, 33.09, 27.17; TLC: Rf = 0.45 (EtOAc /Hexane 8/2, v/v); rt(HPLC) = 14.20 min; HRMS-ESI (m/z): [M+Na]+ calcd for C22H19N3O4Na 412.1268; found 412.1288.

(6R,12aS)-2-benzyl-6-(4-bromophenyl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8h):

Yield (185 mg, 74%); pale yellow oil; [α]D = -80.0 ° (c 0.5, CHCl3); 1H NMR (250 MHz, CDCl3) δ 8.23 (br s, 1H, NH), 7.54 (d, J = 10.0 Hz, 1H), 7.40-7.21 (m, 8H), 7.13-7.03 (m, 4H), 6.95 (s, 1H), 4.82 (d, J = 14.25 Hz, 1H), 4.32 (d, J = 14.25 Hz, 1H), 4.31 (dd, J = 12.0, 4.5 Hz, 1H), 3.96 (d, J = 18.0 Hz, 1H), 3.86 (d, J = 18.0 Hz, 1H), 3.59 (dd, J = 16.0, 4.5 Hz, 1H), 2.95 (dd, J = 16.0, 12.0 Hz, 1H); 13C NMR (63 MHz, CDCl3) δ 165.17, 161.94, 137.22, 136.39, 134.81, 132.04, 130.40, 129.07, 128.52, 128.32, 126.19, 123.05, 122.88, 120.18, 118.49, 111.25, 109.15, 52.65, 51.45, 49.39, 48.78, 27.75; TLC: Rf = 0.56 (EtOAc /Hexane 9/1, v/v); rt(HPLC) = 18.33 min; HRMS-ESI (m/z): [M+H]+ calcd for C27H23BrN3O2 500.0968; found 500.0976.

(6R,12aS)-6-phenyl-2-((S)-1-phenylethyl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8i):

Yield (158 mg, 73%); yellow oil; [α]D = -184.4 ° (c 0.6, CHCl3); 1H NMR (250 MHz, CDCl3) δ 7.97 (br s, 1H, NH), 7.55 (d, J = 9.0 Hz, 1H), 7.38-7.12 (m, 1H), 7.00 (s, 1H), 6.01 (q, J = 7.0 Hz, 1H), 4.44 (dd, J = 12.25, 4.5 Hz, 1H), 4.01 (d, J = 18.0 Hz, 1H), 3.65 (d, J = 18.0 Hz, 1H), 3.62 (dd, J = 16.0, 4.5 Hz, 1H), 3.00 (dd, J = 16.0, 12.25 Hz, 1H), 1.58 (d, J = 6.5 Hz, 3H); 13C NMR (63 MHz, CDCl3) δ 165.49, 162.92, 137.82, 137.38, 136.65, 129.46, 128.99, 128.94, 128.41, 127.82, 127.40, 126.83, 126.21, 122.96, 120.31, 118.47, 111.26, 52.83, 52.39, 50.92, 43.64, 27.59, 15.08; TLC: Rf = 0.35 (EtOAc /Hexane 1/1, v/v); rt(HPLC) = 18.33 min; HRMS-ESI (m/z): [M+H]+ calcd for C28H26N3O2 436.2020; found 436.2018.

(6S,12aR)-6-phenyl-2-((S)-1-phenylethyl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8j):

Yield (163 mg, 75%); pale yellow solid; mp= 195-197 °C; $[\alpha]_D^0 = +75.7$ ° (c 0.6, CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$) δ 7.80 (br s, 1H, NH), 7.56 (d, $J = 7.75$ Hz, 1H), 7.39-7.14 (m, 13H), 7.03 (s, 1H), 6.09 (q, $J = 7.5$ Hz, 1H), 4.45 (dd, $J = 12.0$, 3.75 Hz, 1H), 3.90 (d, $J = 18.0$ Hz, 1H), 3.63 (dd, $J = 15.5$, 3.75 Hz, 1H), 3.53 (d, $J = 18.0$ Hz, 1H), 2.94 (dd, $J = 15.5$, 12.0 Hz, 1H), 1.55 (d, $J = 6.75$ Hz, 3H); 13C NMR (63 MHz, CDCl$_3$) δ 165.26, 162.58, 138.08, 136.41, 129.59, 128.93, 128.75, 128.28, 127.44, 126.21, 122.78, 120.10, 118.42, 111.17, 108.93, 52.79, 52.18, 50.26, 43.82, 27.72, 14.54; TLC: R_f = 0.47 (EtOAc / Hexane 6/4, v/v); rt(HPLC) = 17.65 min; HRMS-ESI (m/z): [M+H]$^+$ calcd for C$_{28}$H$_{26}$N$_3$O$_2$ 436.2020; found 436.2010.

(6R,12aS)-6-phenyl-2-((R)-1-phenylethyl)-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8k):

Yield (171 mg, 79%); pale yellow solid; mp= 200-203 °C; $[\alpha]_D^0 = -82.4$ ° (c 0.55, CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$) δ 8.28 (br s, 1H, NH), 7.52 (d, $J = 7.75$ Hz, 1H), 7.40-7.09 (m, 13H), 6.96 (s, 1H), 6.02 (q, $J = 18.0$ Hz, 1H), 4.33 (dd, $J = 12.5$, 4.5 Hz, 1H), 3.81 (d, $J = 18.0$ Hz, 1H), 3.55 (dd, $J = 15.5$, 4.5 Hz, 1H), 3.46 (d, $J = 18.0$ Hz, 1H), 2.86 (dd, $J = 15.5$, 12.5 Hz, 1H), 1.49 (d, $J = 7.5$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 165.20, 162.30, 138.27, 136.40, 129.75, 128.98, 128.83, 128.28, 127.35, 126.21, 122.78, 120.10, 118.42, 111.17, 108.90, 52.85, 52.07, 50.10, 43.82, 27.72, 14.54; TLC: R_f = 0.47 (EtOAc / Hexane 6/4, v/v); rt(HPLC) = 17.65 min; HRMS-ESI (m/z): [M+H]$^+$ calcd for C$_{28}$H$_{26}$N$_3$O$_2$ 436.2020; found 436.2027.

(3R,6R,12aS)-2-benzyl-3,6-diphenyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8l):

Yield (178 mg, 72%); white solid; mp= 267-269 °C; $[\alpha]_D^0 = -26.6$ ° (c 0.3, CHCl$_3$); 1H NMR (250 MHz, DMSO-d$_6$) δ 11.04 (br s, 1H, NH), 7.58 (d, $J = 7.25$ Hz, 1H), 7.35-7.01 (m, 18H), 6.90 (s, 1H), 5.05 (d, $J = 14.50$ Hz, 1H), 5.02 (s, 1H), 4.53 (dd, $J = 11.25$, 4.75 Hz, 1H), 3.59 (dd, $J = 16.0$, 4.75 Hz, 1H), 3.56 (d, $J = 14.50$ Hz, 1H), 3.10 (dd, $J = 16.0$, 11.25 Hz, 1H); 13C NMR (126 MHz, DMSO-d$_6$) δ 165.70, 163.56, 139.66, 138.02, 136.90, 136.23, 130.42, 129.63, 129.28, 129.05, 128.99, 128.73, 128.16, 128.14, 128.03, 128.05, 127.86, 126.40, 122.17, 119.42, 114.82, 111.84, 107.38, 63.48, 52.42, 52.07, 47.16, 28.91; TLC: R_f = 0.53 (EtOAc / Hexane 3/7, v/v); rt(HPLC) = 19.25 min; HRMS-ESI (m/z): [M+Na]$^+$ calcd for C$_{33}$H$_{27}$N$_3$O$_2$Na 520.1995; found 520.2089.
(S)-2'-benzyl-2',3',12',12a'-tetrahydro-4'H-spiro[cyclohexane-1,6'-pyrazino[1',2':1,6]pyrido[3,4-b]indole]-1',4'(7'H)-dione (8m):

Yield (166 mg, 80%); white solid; mp= 281-283 °C; 1H NMR (500 MHz, DMSO-d6) δ 10.83 (br s, 1H, NH), 8.04 (s, 1H); 7.46 (d, J = 8.0 Hz, 1H), 7.31-7.22 (m, 4H), 7.05-7.02 (m, 3H), 6.95 (t, J = 8.0 Hz, 1H), 6.00 (s, 1H), 4.60 (d, J = 15.0 Hz, 1H), 4.10-4.07 (m, 1H); 3.91 (d, J = 15.0 Hz, 1H), 3.31-3.21 (m, 3H), 3.05 (d, J = 17.0 Hz, 1H), 2.40-2.35 (m, 2H), 2.20-2.14 (m, 2H), 1.75-1.68 (m, 2H), 1.66-1.59 (m, 2H); 13C NMR (126 MHz, DMSO-d6) δ 166.99, 165.07, 139.45, 136.55, 130.43, 129.13, 129.04, 128.17, 127.96, 127.85, 121.40, 118.97, 111.17, 104.68, 56.72, 48.92, 48.72, 29.81, 27.96, 25.69, 22.88, 22.00; TLC: Rf = 0.31 (EtOAc / Hexane 8/2, v/v); rt(HPLC) = 15.72 min; HRMS-ESI (m/z): [M+Na]+ calcd for C26H27N3O2Na 436.1996; found 436.1970.

(S)-2-benzyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione (8n):

Yield (130 mg, 75%); off-white solid; mp= 185-188 °C; 1H NMR (500 MHz, CDCl3) δ 7.93 (br s, 1H, NH), 7.50 (d, J = 7.0 Hz, 1H), 7.41-7.22 (m, 6H), 7.21-7.13 (m, 2H), 5.62 (d, J = 17.50 Hz, 1H), 4.74 (d, J = 14.0 Hz, 1H), 4.66 (d, J = 14.0 Hz, 1H), 4.45 (d, J = 10.50 Hz, 1H), 4.21 (d, J = 16.50 Hz, 1H), 4.02 (s, 2H), 3.59 (d, J = 15.0 Hz, 1H), 2.96 (t, J = 13.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 165.44, 163.07, 136.06, 136.22, 134.84, 129.09, 128.53, 128.83, 128.33, 128.02, 126.65, 122.58, 120.20, 118.20, 111.00, 107.44, 56.88, 49.49, 48.68, 40.05, 27.41; TLC: Rf = 0.45 (EtOAc / Hexane 19/1, v/v); rt(HPLC) = 14.95 min; HRMS-ESI (m/z): [M+H]+ calcd for C21H20N3O2 346.1550; found 346.1553.
4. NOESY Studies of 8a and 8l

The relative configuration of the THBC-based DKP 8a was confirmed by NOESY studies. As shown in Figure 3, the configuration of the trans isomer 8a was determined by the presence of a nOe between the proton at position C-12a and the aryl ortho protons at position C-6, thus confirming a trans-stereochemistry for 8a. Since the C-12a configuration was known (L-tryptophan was used as starting material) the absolute configuration of the major isomers corresponds to (6R,12aS).

![THBC-based DKP (8a)](image)

Figure 1. Identification of the relative configuration of 8a by 2D NOESY experiments

The relative configuration of the THBC-based DKP 8l was confirmed by NOESY studies. As shown in Figure 4, the configuration of the trans isomer 8l was determined by the presence of a nOe between the proton at position C-12a and the aryl ortho protons at position C-3, thus confirming a trans-stereochemistry for 8l. Since the C-12a configuration was known (L-tryptophan was used as starting material) the absolute configuration of the major isomers corresponds to (3R, 6R,12aS).

![THBC-based DKP (8l)](image)

Figure 2. Identification of the relative configuration of 8l by 2D NOESY experiments
5. NMR Spectra

(8a): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: $C_{27}H_{23}N$_2O_2

(8a): 13C NMR (63 MHz, CDCl$_3$)
Chemical Formula: C_{22}H_{21}N_{3}O_{2}

(8c): 13C NMR (63 MHz, CDCl$_3$)
(8d): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: $\text{C}_25\text{H}_{21}\text{N}_3\text{O}_2$

(8d): 13C NMR (63 MHz, CDCl$_3$)
(8e): 1H NMR (250 MHz, MeOD)

(8e): 13C NMR (63 MHz, MeOD)

Chemical Formula: C_{19}H_{23}N_{3}O_{2}
(8f): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: C$_{22}$H$_{19}$N$_3$O$_4$

(8f): 13C NMR (63 MHz, CDCl$_3$)
(8f): 1H NMR (500 MHz, (CD$_3$)$_2$SO)
(8g): 1H NMR (500 MHz, (CD$_3$)$_2$SO)

Chemical Formula: C$_{22}$H$_{19}$N$_3$O$_4$

(8g): 13C NMR (126 MHz, (CD$_3$)$_2$SO)
(8h): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: C$_{27}$H$_{22}$BrN$_3$O$_2$

(8h): 13C NMR (63 MHz, CDCl$_3$)
(8i): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: C$_{28}$H$_{25}$N$_3$O$_2$

(8i): 13C NMR (63 MHz, CDCl$_3$)
(8j): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: C$_{28}$H$_{25}$N$_3$O$_2$

(8j): 13C NMR (63 MHz, CDCl$_3$)
(8k): 1H NMR (250 MHz, CDCl$_3$)

(8k): 13C NMR (126 MHz, CDCl$_3$)
(8l): 1H NMR (250 MHz, (CD$_3$)$_2$SO)

Chemical Formula: C$_{33}$H$_{27}$N$_3$O$_2$

(8l): 13C NMR (126 MHz, (CD$_3$)$_2$SO)
(8m): \(^1\text{H NMR (500 MHz, (CD\textsubscript{3})\textsubscript{2}SO)}\)

(8m): \(^{13}\text{C NMR (126 MHz, (CD\textsubscript{3})\textsubscript{2}SO)}\)
(8n): ¹H NMR (500 MHz, CDCl₃)

(8n): ¹³C NMR (126 MHz, CDCl₃)
(8i/8i': 70/30 dr): 1H NMR (250 MHz, CDCl$_3$)

(8i/8i': 70/30 dr): 13C NMR (63 MHz, CDCl$_3$)
(8i/8j : 40/60 dr): ^1^H NMR (500 MHz, CDCl$_3$)

(8i/8j : 40/60 dr): ^13^C NMR (126 MHz, CDCl$_3$)
(7i : 53/47 dr): 1H NMR (250 MHz, CDCl$_3$)

Chemical Formula: C$_2$H$_2$N$_2$O$_2$

7i (95%, 53/47 dr)

(7i : 53/47 dr): 13C NMR (126 MHz, CDCl$_3$)
(7a : 75/25 dr): \(^1\)H NMR (500 MHz, CDCl\(_3\) at 293 K) (4 rotamers : 34/32/20/14)

Chemical Formula: C\(_{31}\)H\(_{34}\)N\(_4\)O\(_2\)

\[7a\ (75/25 \text{ dr})\]
(8a): COSY
(8a): NOESY
(8a): HSQC
(8a): HPLC