A novel pyrene-2-(pyridin-2-ylmethylsulfanyl)ethylamine based turn-on dual sensor for Al³⁺: experimental and computational studies†

Rahul Bhowmick^a, Malay Dolai^a, Rabiul Alam^a, Tarun Mistri^a, Atul Katarkar^b, Keya Chaudhuri^b and Mahammad Ali^a*

Table of contents

- 1. ¹H NMR spectrum of P, **Fig. S1**
- 2. ¹H NMR spectrum of PP, **Fig. S2**
- 3. ¹H NMR spectrum of AI-PP complex, Fig. S3
- 4. Mass spectrum of P in CH₃OH, Fig. S4
- 5. Mass spectrum of PP in CH₃OH, Fig. S5
- 6. Mass spectrum of AI-PP in CH₃OH, Fig. S6
- 7. IR Spectrum of AI-PP complex, Fig. S7
- 8. Naked eye image of PP and corresponding Al³⁺ complex, Fig. S8
- 9. Dynamic light scattering (DLS) plot, Fig. S9
- 10. Emission spectra of PP in different conc., Fig. S10
- 11. Excitation spectra of PP in different emission, Fig. S11
- 12.Limit of detection and limit of quantification calculation using fluorescence and UV-VIS techniques, Fig. S12
- 13. Reversibility Check of the sensor with EDTA, Fig. S13
- 14.Cytotoxicity test of the ligand PP, Fig. S14
- 15. Table of DLS data, **Table. ST1**

16. Selected parameters for the vertical excitation (UV-VIS absorptions) of L; electronic excitation energies (eV) and oscillator

strength (f), configurations of the low-lying excited states of L; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground-

state geometries (UV-vis absorption), Table. ST2

17. Main calculated optical transition for the complex 1 with composition in terms of molecular orbital contribution of the

transition, vertical excitation energies, and oscillator strength in methanol, Table. ST3

Fig. S1 ¹H NMR spectrum of **P** in CDCI₃ in Bruker 300 MHz instrument.

Fig.S2 1 H NMR spectrum of **PP** in DMSOd₆ in Bruker 300 MHz instrument.

Fig.S3 ¹H NMR spectrum of **PP+ AI**³⁺ in DMSO-d₆in Bruker 300 MHz instrument.

Fig. S4 Mass spectrum of **P** in CH_3OH .

Fig.S5 Mass spectrum of **PP** in CH₃OH.

Fig.S6 Mass spectrum of PP+AI³⁺ in CH₃OH.

Fig. S7 IR spectrum of Al-PP complex.

Fig. S8 Naked eye images of PP ($20 \ \mu$ M) in presence of equimolar amount of Al³⁺ in aqueous-methanol solution at pH 7.2 (HEPES buffer).

Statistics Graph (1 measurements)

Dynamic light scattering (DLS) plot of PP

Statistics Graph (1 measurements)

Dynamic light scattering (DLS) plot of PP+ Al³⁺

Fig.S9 Dynamic light scattering (DLS) plot.

Fig. S10 Emission spectra of PP in different concentrations at λ_{ex} = 440nm (inset normalised spectra).

Fig.S11 Excitation spectra of PP in 506, 500, 495 and 488nm emission.

Limit of detection (LOD) plot using fluorescence technique.

Limit of quantification= 10 x Standard deviation of blank/Slope = 10X 1914 / 3.62X10¹¹ = 5.28 X 10⁻⁸ M

Limit of detection (LOD) plot using UV-VIS technique.

Limit of quantification= 10X Standard deviation of blank / Slope = 10X .52 / 2.77X10⁴ = 1.87X 10⁻⁴ M

Fig.S13 Reversibility plot with EDTA.

Fig.14 Cytotoxicity test of the ligand PP.

Table S1 Dynamic light scattering (DLS) data of PP and PP+Al^{3+}

		Size (d.nm)	% of Intensity	Width (n. nm)
РР				
	Peak 1	1.137	41.8	42.32
	PEAK 2	231.5	58.2	0.1206
PP+ Al ³⁺				
	Peak 1	5.402	53.3	0.6838
	Peak 2	358.9	46.7	61.47

Table S2 Selected parameters for the vertical excitation (UV-VIS absorptions) of L; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of L; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground- state geometries (UV-vis absorption).

Electronic transition	Composition	Excitation energy	Oscillator strength (<i>f</i>)	CI	Assignme nt	λ _{exp} (nm)
$S_0 \to S_2$	HOMO–2 → LUMO+1	3.9974eV (339nm)	0.3895	0.15137	ILCT	343
	HOMO → LUMO			0.64857	ILCT	
	HOMO→ LUMO+1			- 0.18792	ILCT	
$S_0 \rightarrow S_7$	HOMO- 2→LUMO	4.2529 eV (291 nm)	0.1511	0.58459	ILCT	286/27 5
	HOMO→ LUMO + 1			0.26132	ILCT	
	HOMO→ LUMO + 4			0.21850	ILCT	
$egin{array}{c} S_0 ightarrow S_{11} \ \end{array}$	HOMO– 2→ LUMO+1	4.6548e V (266 nm)	1.2965	0.64553	ILCT	263/260
	HOMO- 1→ LUMO + 3			-0.12244	ILCT	
	HOMO→ LUMO			-0.14788	ILCT	
$egin{array}{ccc} {\sf S}_0 & ightarrow \ {\sf S}_{17} & \ \end{array}$	HOMO– 7→LUMO +1	5.0265 eV (246 nm)	0.1124	0.10092	ILCT	243/233
	HOMO- 2→ LUMO			0.16606	ILCT	
	HOMO→ LUMO+5			0.61462	ILCT	

Table S3 Main calculated optical transition for the complex 1 with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in methanol.

Electro nic transitio n	Compositi on	Excitatio n energy	Oscillat or strengt h (<i>f</i>)	CI	Transitio n assigne d	λ _{exp} (nm)
$S_0 ightarrow S_6$	HOMO – 2 → LUMO+1	3.1468e V (394 nm)	0.3069	- 0.1 139 6	MLCT/IL CT	390
	HOMO – 1 → LUMO+1			0.6550 6	MLCT/IL CT	
	HOMO → LUMO + 3			- 0.2 334 8	ILCT	
$S_0 ightarrow S_8$	HOMO – 2→ LUMO + 1	3.4719e V (357 nm)	0.0405	0.69131	MLCT/IL CT	360
	HOMO – 1→ LUMO + 1			0.11297	MLCT/IL CT	
$S_0 \rightarrow S_{11}$	HOMO – 4→ LUMO + 1	3.7093e V (334nm)	1.3617	0.14673	MLCT/IL CT	343
	HOMO – 1→ LUMO + 1			0.23355	MLCT/IL CT	
	$\begin{array}{l} HOMO \rightarrow \\ LUMO + 3 \end{array}$			0.62749	ILCT	