Supporting Information

Synthesis and Electrochemical Performance of Maricite-NaMPO₄ (M=Ni, Co, Mn) Electrodes for Hybrid Supercapacitor

Baskar Senthilkumar,ᵃ Kalimuthu Vijaya Sankar,ᵃ Leonid Vasylechkoᵇ and Yun-Sung Lee,ᶜ
Ramakrishnan Kalai Selvan,ᵃ *

Fig. S1. Graphical results of the Rietveld refinement of NaMnPO₄ sample showing presence of orthorhombic maricite-type phase (blue line) as a predominant one.
Fig. S2. Graphical results of the Rietveld refinement of NaCoPO$_4$ sample showing presence of 77 wt. % of hexagonal (blue) and 23 wt. % of orthorhombic (red) polymorphs of NaCoPO$_4$.
Fig. S3. (a) plot for the variation of b-value *vs* potential, and (b, c) corresponds to the Trasatti plot.
Table S1. Selected bond lengths and bond angles with estimated standard deviations in parenthesis in the NaNiPO₄ structure

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Distances (Å)</th>
<th>Atoms</th>
<th>Angles (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO₄ tetrahedra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P – O₂</td>
<td>2×1.516(10)</td>
<td>O₁ – P – O₂</td>
<td>2×108.74(8)</td>
</tr>
<tr>
<td>P – O₃</td>
<td>1.548(15)</td>
<td>O₁ – P – O₃</td>
<td>110.97(8)</td>
</tr>
<tr>
<td>P – O₁</td>
<td>1.566(15)</td>
<td>O₂ – P – O₂</td>
<td>112.07(7)</td>
</tr>
<tr>
<td>(P – O)ave</td>
<td>1.537</td>
<td>O₂ – P – O₃</td>
<td>2×108.17(7)</td>
</tr>
<tr>
<td>NiO₆ octahedra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni – O₂</td>
<td>2×2.021(9)</td>
<td>O₁ – Ni – O₂</td>
<td>2×87.99(4), 2×92.01(4)</td>
</tr>
<tr>
<td>Ni – O₃</td>
<td>2×2.117(7)</td>
<td>O₁ – Ni – O₃</td>
<td>2×74.89(4), 2×105.11(4)</td>
</tr>
<tr>
<td>Ni – O₁</td>
<td>2×2.326(10)</td>
<td>O₂ – Ni – O₃</td>
<td>2×85.51(4), 2×94.49(4)</td>
</tr>
<tr>
<td>(Ni – O)ave</td>
<td>2.155</td>
<td>O₁ – Ni – O₁</td>
<td>180.00(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O₂ – Ni – O₂</td>
<td>180.00(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O₃ – Ni – O₃</td>
<td>180.00(4)</td>
</tr>
<tr>
<td>NaO₆ polyhedra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na – O₂</td>
<td>2×2.205(9)</td>
<td>O₁ – Na – O₂</td>
<td>2×79.14(5), 2×87.81(5)</td>
</tr>
<tr>
<td>Na – O₁</td>
<td>2.28(2)</td>
<td>O₂ – Na – O₃</td>
<td>2×74.05(5), 2×105.90(5)</td>
</tr>
<tr>
<td>Na – O₃</td>
<td>2.45(2)</td>
<td>O₁ – Na – O₃</td>
<td>65.52(5), 115.05(6)</td>
</tr>
<tr>
<td>Na – O₁</td>
<td>2.53(2)</td>
<td>O₃ – Na – O₁</td>
<td>65.79(5), 113.64(5)</td>
</tr>
<tr>
<td>Na – O₃</td>
<td>2.59(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Na – O)ave</td>
<td>2.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>