A highly efficient Nafion-H catalyst for vapour phase carbonylation of dimethoxymethane

Shiping Liu, Wenliang Zhu, Lei Shi, Hongchao Liu, Yong Liu, Youming Ni, Lina Li, Hui Zhou, Shutao Xu and Zhongmin Liu

Experimental Section

Preparation of catalysts
Nafion-H catalyst: Nafion-H resin powder (<200 mesh, commercially available from Aldrich) was mixed with silica powder by mechanical mixture. The Nafion-H resins loading in the catalyst were 60 wt.%. The obtained mixture was pressed to pellets, then, crushed, sieved to 40–60 mesh particles.

Polystyrenesulfonic acid resins catalysts: Polystyrenesulfonic acid resins, which were purchased from Dandong Mingzhu Special Type Resin Co., Ltd., were used without further treatment.

H-faujasite catalysts: Zeolite samples were obtained commercially with different Si/Al ratios in H\(^+\) form (Si/Al=4.3, Nankai University catalyst Co., Ltd.; Si/Al=15, Si/Al =40, Zeolyst). The zeolite samples were calcined in static air at 723 K for 4 h, and then, pelletized, crushed, sieved to 40–60 mesh size for activity test.

Sample Preparation for \(^1\)H MAS NMR
Prior to the pyridine-\(d_5\) adsorption and NMR experiments, all the samples were dehydrated at 120 °C for 12 h under vacuum condition(<1×10\(^{-2}\) Pa). When the samples were cooled to ambient temperature, the pyridine-\(d_5\) was introduced from a vacuum line at room temperature. Then, the overloaded pyridine-\(d_5\) was removed at 313 K for 10 min in vacuum. After adsorption of pyridine-\(d_5\), the sealed samples were transferred into a NMR rotor under a dry nitrogen atmosphere in a glovebox.

Solid-State NMR Experiments
\(^1\)H MAS NMR spectra were recorded on a Bruker AvanceIII 600 spectrometer equipped with a 14.1 T wide-bore magnet using a 4 mm MAS probe with resonance frequencies of 600.13 MHz. The pulse width was 2.2 µs for a \(\pi/4\) pulse, and 32 scans were accumulated with a 10 s recycle delay. Samples were spun at 12 kHz, and chemical shifts were referenced to adamantane at 1.74 ppm.
Catalytic test

DMM (commercially available from Aldrich) carbonylation reactions were performed in a continuous-flow fixed-bed stainless steel reactor. Typically, 0.1 g of catalyst was loaded into a reactor tube (8 mm internal diameter). The sample was then heated to 120 °C for an hour under nitrogen atmosphere (30 ml min⁻¹) to remove residual water and then cooled to the reaction temperature. DMM was carried into reactor by carbon monoxide, which was bubbled through a stainless steel saturator containing liquid DMM isothermally held at 20 °C. The chemical inert nitrogen was introduced to the reaction system to adjust the partial pressure of CO. The reaction effluent was analyzed by gas chromatography (Agilent 7890) equipped with a flame ionization detector. The DMM conversion and MMAc selectivity were calculated with the followed equations.

\[
\text{DMM Conversion} = \left[1 - \frac{3C_{\text{DMM}}}{3C_{\text{DMM}} + 2C_{\text{DME}} + 2C_{\text{MF}} + C_{\text{methanol}} + 3C_{\text{MMAc}}} \right] \times 100\% \tag{1}
\]

\[
\text{MMAc selectivity} = \left[\frac{3C_{\text{MMAc}}}{2C_{\text{DME}} + 2C_{\text{MF}} + C_{\text{methanol}} + 3C_{\text{MMAc}}} \right] \times 100\% \tag{2}
\]

where \(C_i \) was the molar concentration of compound \(i \) in the reaction effluent and \(n \) was the number of carbon derived from DMM.

Figure SI 1 the effect of Si/Al ratio on the DMM conversion (△ Si/Al=40; ○Si/Al=15;
and selectivity to MMAc (▲Si/Al=40; ●Si/Al=15; ■Si/Al=4.3) at the same reaction condition (catalyst weight = 0.1 g, reaction pressure = 30.0 atm, reaction temperature = 110°C, DMM partial pressure = 0.42 atm, CO stream = 85 ml min⁻¹).

Table SI 1 the catalytic performance over various sulfonic acids with different acid strength

<table>
<thead>
<tr>
<th>Sulfonic Acids</th>
<th>H_0^a</th>
<th>Selectivity</th>
<th>Conversion</th>
<th>Rate of MMAc Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF₃SO₃H</td>
<td>-14.1</td>
<td>92.8</td>
<td>27.0</td>
<td>12.6</td>
</tr>
<tr>
<td>C₄F₉SO₃H</td>
<td>-13.2</td>
<td>91.7</td>
<td>20.2</td>
<td>10.6</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>-12.0</td>
<td>90.0</td>
<td>10.5</td>
<td>4.4</td>
</tr>
<tr>
<td>CH₃SO₃H</td>
<td>-7.8</td>
<td>88.9</td>
<td><5.0</td>
<td><2.0</td>
</tr>
<tr>
<td>CH₃CH₂SO₃H</td>
<td>>-7.8</td>
<td>72.9</td>
<td><5.0</td>
<td><2.0</td>
</tr>
<tr>
<td>p-CH₃C₆H₄SO₃H</td>
<td>+0.55</td>
<td>79.2</td>
<td><5.0</td>
<td><2.0</td>
</tr>
<tr>
<td>p-CH₃CH₂C₆H₄SO₃H</td>
<td>>0.55</td>
<td>76.1</td>
<td><5.0</td>
<td><2.0</td>
</tr>
</tbody>
</table>

a: H_0, value of Hammett acidity function