Supplementary Material

PhI(OAc)$_2$-BF$_3$-OEt$_2$ Mediated Domino Imine Activation, Intramolecular C-C Bond Formation and β-Elimination: New Approach for the synthesis of Fluorenones, Xanthones and Phenanthridines†

Satinath Sarkar* and Narender Tadigoppula*†

*Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226-031, India. Fax: +91-522-2623405; Tel: +91-522-22612411; E-mail: t_narendra@cdri.res.in; tnarender@rediffmail.com

Contents for supporting information:

General information

Structers of Aldimines (2, 12-19, 31-33 and 40-42)

General procedure for synthesis of biaryl-2-carbaldehydes

Spectroscopic data of biaryl-2-carbaldehydes

General procedure for synthesis of 2-aryloxybenzaldehydes

Spectroscopic data of 2-aryloxybenzaldehydes

General procedure for synthesis of biaryl-2-amines

Spectroscopic data of biaryl-2-amines

General procedure for synthesis of fluorenones and xanthones

Spectroscopic data of fluorenones and xanthones

General procedure for synthesis of phenanthridines

Spectroscopic data of phenanthridines

Copies of 1H-NMR and 13C-NMR

General information

All reagents were purchased from commercial suppliers and used without further purification. IR spectra of the compounds were recorded on Perkin-Elmer AC-1 spectrometer. 1H NMR spectra were run on Bruker Advance DPX 300 MHz spectrometer in CDCl$_3$ and TMS was used as internal standard. ESI mass spectra were recorded on JEOL SX 102/DA-6000. Silica gel 60-120 and 230-400 mesh was used as stationary phase to isolate the compounds. Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. Dichloromethane (DCM) and 1,2-dichloroethane (DCE) was distilled over calcium hydride. Aldimines (2, 12-19, 29, 32, 37-39 and 46-48) were prepared from condensation of the corresponding aldehydes with amines according to the literature method.†
Structures of Aldimines (2, 12-19, 29, 32, 37-39 and 46-48)
General procedure (I) for synthesis of biaryl-2-carbaldehydes

5 mmol of 2-bromobenzaldehyde, 6 mmol of arylboronic acid and 0.5 mmol of Pd(PPh$_3$)$_4$ were taken in a round bottom flask. 10 ml of DMF was added in the reaction mixture and stirred for 2 min. 10 ml of 2(M) Na$_2$CO$_3$ solution was then added and then refluxed for 4-8 h at 80 °C. The reaction mixture was extracted with ethyl acetate (2 x 10 mL). The combined ethyl acetate layers were dried over anhydrous Na$_2$SO$_4$ and concentrated under vacuum to yield the crude product, which was purified by column chromatography on silica gel (60-120 mesh) using ethyl acetate/hexane as eluent.

Spectroscopic data of biaryl-2-carbaldehydes

2-(naphthalen-2-yl)benzaldehyde (1): Following the general procedure (I), 1 was prepared from naphthalen-2-ylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Yellow oil 373 mg (59% yield); IR (KBr): ν max 3058, 3020, 2860, 1695 cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): δ 10.08 (s, 1H), 8.11 (d, $J = 7.7$ Hz, 1H), 7.98-7.85 (m, 4H), 7.72-7.60 (m, 1H), 7.58-7.56 (m, 5H); 13C-NMR (75 MHz, CDCl$_3$): δ 192.4 (C), 145.9 (C), 135.2 (C), 134.0 (C), 133.6 (CH), 133.0 (C), 132.8 (C), 131.0 (CH), 129.5 (CH), 128.2 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.8 (CH), 127.7 (CH), 126.9 (CH), 126.7 (CH); MS (ESI): m/z = 233.1 (M+H)$^+$. The compound was previously reported by Larock et al.2

3',4'-dichlorobiphenyl-2-carbaldehyde (4): Following the general procedure (I), 4 was prepared from 3,4-dichlorobenzaldehyde and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 80 : 20). Yellow solid 412 mg (61% yield); m.p. 136-138 °C; IR (KBr): 3035, 2850, 1692, 777, 766 cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): δ 10.15 (s, 1H), 7.94 (dd, $J = 7.3$, 1.4 Hz, 1H), 7.77 (dd, $J = 7.5$, 1.6 Hz, 1H), 7.72-7.63 (m, 3H), 7.39 (d, $J = 7.5$ Hz, 1H), 7.31 (dd, $J = 7.4$, 1.3 Hz, 1H); 13C-NMR (75 MHz, CDCl$_3$): δ 193.2 (C), 139.3 (C), 137.4 (C), 137.4 (C), 135.0 (CH), 134.2 (C), 131.9 (CH), 128.8 (CH), 128.7 (CH), 128.6 (CH), 127.0 (CH), 126.3 (CH), 126.1 (CH); MS (ESI): m/z = 251.1 (M+H)$^+$. The compound was previously reported.2

4'-chlorobiphenyl-2-carbaldehyde (5): Following the general procedure (I), 5 was prepared from 4-chlorobenzaldehyde and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 383 mg (67% yield). Spectroscopic data was identical with that previously reported.3

4'-methylbiphenyl-2-carbaldehyde (6): Following the general procedure (I), 6 was prepared from 4-methylbenzaldehyde and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 382 mg (72% yield). Spectroscopic data was identical with that previously reported.4
4'-ethylbiphenyl-2-carbaldehyde (7): Following the general procedure (I), 7 was prepared from 4-ethylphenylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 407 mg (68% yield); IR (Neat): 3020, 2965, 2930, 2845, 1698 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 10.03 (s, 1H), 8.04 (d, \(J = 6.9\) Hz, 1H), 7.68-7.62 (m, 1H), 7.52-7.46 (m, 2H), 7.33 (brs, 4H), 2.74 (q, \(J = 7.6\) Hz, 2H), 1.33 (t, \(J = 7.6\) Hz, 3H); \(^1\)C-NMR (75 MHz, CDCl\(_3\)): \(\delta\) 192.6 (C), 146.0 (C), 135.0 (C), 133.8 (C), 133.5 (CH), 130.8 (CH), 130.1 (2CH), 127.9 (2CH), 127.5 (CH), 28.6 (CH\(_2\)), 15.5 (CH\(_3\)); MS (ESI): \(m/z\) 211.1 (M+H)

4'-propylbiphenyl-2-carbaldehyde (8): Following the general procedure (I), 8 was prepared from 4-propylphenylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 450 mg (74% yield); IR (Neat): 3032, 2945, 2862, 1696 cm\(^{-1}\); MS (ESI): \(m/z\) 225.1 (M+H); \(^1\)H- and \(^13\)C-NMR data was identical with that previously reported.\(^5\)

4'-isopropylbiphenyl-2-carbaldehyde (9): Following the general procedure (I), 9 was prepared from 4-isopropylphenylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 405 mg (68% yield). Spectroscopic data was identical with that previously reported.\(^6\)

4'-tert-butylbiphenyl-2-carbaldehyde (10): Following the general procedure (I), 10 was prepared from 4-tertbutylphenylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 445 mg (69% yield). Spectroscopic data was identical with that previously reported.\(^7\)

Biphenyl-2-carbaldehyde (11): Following the general procedure (I), 11 was prepared from phenylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 344 mg (69% yield). Spectroscopic data was identical with that previously reported.\(^8\)
2-(benzofuran-3-yl)benzaldehyde (28): Following the general procedure (I), 28 was prepared from benzofuran-3-ylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 85 : 15). Pale yellow oil 410 mg (68% yield). Spectroscopic data was identical with that previously reported.2

2-(naphthalen-1-yl)benzaldehyde (31): Following the general procedure (I), 31 was prepared from naphthalen-1-ylboronic acid and 2-bromo benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). White solid 362 mg (58% yield); m.p.: 88-90°C (lit m.p. 87-88°C). Spectroscopic data was identical with that previously reported.10

General procedure (II) for synthesis of the 2-(aryloxy)benzaldehydes11

To a solution of DMA (10 mL) containing 2-fluorobenzaldehyde (5.0 mmol) and hydroxy benzene derivative (5.0 mmol), was added K2CO3 (5.0 mmol) and the reaction mixture was stirred for 2 h at 170°C under an Argon atmosphere. It was then cooled to room temperature and after usual workup and concentration, crude mixture was purified by column chromatography on silica gel (60-120 mesh) using ethyl acetate/hexane as eluent.

Spectroscopic data of 2-(aryloxy)benzaldehydes

2-(p-tolyloxy)benzaldehyde (34): Following the general procedure (II), 34 was prepared from 4-methylphenol and 2-fluorobenzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 512 mg (60% yield). Spectroscopic data was identical with that previously reported.12

2-(4-tert-butylphenoxy)benzaldehyde (35): Following the general procedure (II), 35 was prepared from 4-tertbutylphenol and 2-fluorobenzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 650 mg (65% yield). Spectroscopic data was identical with that previously reported.2

2-phenoxybenzaldehyde (36): Following the general procedure (II), 36 was prepared from phenol and 2-fluoro benzaldehyde and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 496 mg (62% yield). Spectroscopic data was identical with that previously reported.13

General procedure (III) for synthesis of biaryl-2-amines14

To a 100 mL round bottom flask, aryl boronic acid (3.0 mmol), K2CO3 (8.0 mmol), and Pd(PPh3)4 (0.2 mmol) were dissolved in 15 mL of toluene followed by the addition of 3 mL of H2O and 5 mL of EtOH. 2-Bromoaniline (2.0 mmol) was then added and the resulting mixture was heated at 100°C for 16 h. After cooling to room temperature, the reaction mixture was diluted...
with 30 mL of saturated aqueous NH₄Cl and 30 mL of CH₂Cl₂. The aqueous phase was extracted with an additional 2 × 30 mL of CH₂Cl₂, and the combined organic layers were washed with 30 mL of water and 30 mL of saturated aqueous NaHCO₃. The organic phase was dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (60-120 mesh) using ethyl acetate/hexane as eluent.

Spectroscopic data of biaryl-2-amines

![Biaryl-2-amine](image)

4'-chlorobiphenyl-2-amine (43): Following the general procedure (III), 43 was prepared from 4-chlorophenylboronic acid and 2-bromo aniline and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 80 : 20). Yellow oil 15 410 mg (69% yield). Spectroscopic data was identical with that previously reported. 15

![Biaryl-2-amine](image)

4'-methylbiphenyl-2-amine (44): Following the general procedure (III), 44 was prepared from 4-methylphenylboronic acid and 2-bromo aniline and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 80 : 20). Brown oil 16 332 mg (62% yield). Spectroscopic data was identical with that previously reported. 16

![Biaryl-2-amine](image)

biphenyl-2-amine (45): Following the general procedure (III), 45 was prepared from phenylboronic acid and 2-bromo aniline and purified by column chromatography on silica gel (60-120 mesh) using (hexane : EtOAc = 80 : 20). Brown solid 17 310 mg (63% yield). mp. 51-54 °C (lit. 17 m.p. 52-54 °C); Spectroscopic data was identical with that previously reported. 17

General procedure (IV) for synthesis of fluorenones, anthranone and xanthones

Aldimine (0.25 mmol) was dissolved in DCE (1.0 ml) and added in mixture of PhI(OAc)₂ (0.375 mmol) and BF₃-OEt₂ (0.375 mmol) in DCE (3 ml). The resulting reaction mixture was stirred at room temperature for 5 min and then was refluxed for 24-30 h at 80 °C and then cooled to room temperature. 1N HCl (2 ml) was added and stirred for 2-6 h at room temperature. Diluted with H₂O and extracted with diethyl ether (2 x 15 mL). The organic layers were combined, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure to afford the residue, which was purified by column chromatography on silica gel (230-400 mesh) using ethyl acetate/hexane as the eluent to provide the desired product.

Spectroscopic data of fluorenones, anthranone and xanthones

![Fluorenone](image)

1H-benzo[b]fluoren-11-one (3): Following the general procedure (IV), 3 was prepared from aldimine 2 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow solid 18 (60 mg, 61% yield); m.p.: 142-144 °C (lit. 18 m.p. 141-142 °C); IR (KBr); v max 3042, 1710, 1604, 895 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 8.17 (s, 1H), 7.89-7.86 (m, 2H), 7.85 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.57-7.53 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ 193.1 (C), 144.8 (C), 138.5 (C), 136.9 (C), 136.2
(C), 135.0 (CH), 133.9 (C), 132.7 (C), 130.8 (CH), 129.1 (CH), 128.8 (CH), 128.7 (CH), 126.6 (CH), 125.6 (CH), 124.4 (CH), 120.8 (CH), 119.0 (CH); MS (ESI): \(m/z = 231.1 \) (M+H)+; HRMS (ESI) calculated for \(C_{17}H_{10}O: 230.0732 \), found: 231.0734 (M+H)+. Spectroscopic data was compared with that previously reported.\(^{18}\)

2,3-dichloro-9H-fluoren-9-one (20): Following the general procedure (IV), 20 was prepared from aldimine \(12 \) and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 85 : 15). Yellow solid (64 mg, 65% yield); m.p.: 134-136 °C; IR (KBr): \(\nu_{\text{max}} 1712, 1602, 777 \text{ cm}^{-1} \); \(^{1}H\)-NMR (300 MHz, CDCl\(_3 \)): \(\delta 7.75 (s, 1H), 7.61 (s, 1H), 7.57 (dd, J = 7.8, 1.5 \text{ Hz}, 1H), 7.49 (dd, J = 7.5, 1.4 \text{ Hz}, 1H), 7.43-7.37 (m, 1H), 7.31-7.25 (m, 1H); \(^{13}C\)-NMR (75 MHz, CDCl\(_3 \)): \(\delta 195.9 \) (C), 143.8 (C), 142.5 (C), 140.4 (C), 136.9 (C), 136.1 (C), 135.7 (C), 133.9 (C), 129.5 (CH), 128.3 (CH), 125.8 (CH), 123.0 (CH), 122.2 (CH); MS (ESI): \(m/z = 249.1 \) (M+H)+; HRMS (ESI) calculated for \(C_{13}H_{6}Cl_2O: 247.9796 \), found: 248.9798 (M+H)+.

2-chloro-9H-fluoren-9-one (21): Following the general procedure (IV), 21 was prepared aldimine \(13 \) and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow solid \(58 \) mg (59% yield). m.p.: 120-121 °C (lit.\(^{19}\) mp 118-120 °C); Spectroscopic data was identical with that previously reported.\(^{19}\)

2-methyl-9H-fluoren-9-one (22): Following the general procedure (IV), 22 was prepared from aldimine \(14 \) and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow solid \(56 \) mg (57% yield). m.p.: 92-94 °C (lit.\(^{19}\) mp 92 °C); Spectroscopic data was identical with that previously reported.\(^{19}\)

2-ethyl-9H-fluoren-9-one (23): Following the general procedure (IV), 23 was prepared from aldimine \(15 \) and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil 56 mg (57% yield); IR (Neat): 1720, 1600, 1450 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, CDCl\(_3 \)): \(\delta 7.64-7.58 (m, 2H), 7.50-7.41 (m, 3H), 7.30-7.22 (m, 2H), 2.72 (q, J = 6.8 \text{ Hz}, 2H), 1.30 (t, J=6.6 \text{ Hz}, 3H); \(^{13}C\)-NMR (75 MHz, CDCl\(_3 \)): \(\delta 194.2 \) (C), 144.9 (C), 141.2 (C), 139.8 (C), 135.9 (C), 135.4 (C), 134.7 (CH), 134.5 (CH), 128.5 (CH), 125.7 (CH), 125.2 (CH), 121.5 (CH), 121.1 (CH), 28.7 (CH\(_2 \)), 13.0 (CH\(_3 \)); MS (ESI): \(m/z = 209.1 \) (M+H)+; HRMS (ESI) calculated for \(C_{15}H_{12}O: 208.0888 \), found: 209.0887 (M+H)+.

2-propyl-9H-fluoren-9-one (24): Following the general procedure (IV), 24 was prepared from aldimine \(16 \) and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow oil 54 mg (55% yield); IR (Neat): 2935, 1722, 1605, 1480, 1450 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, CDCl\(_3 \)): \(\delta 7.65 (d, J = 1.3 \text{ Hz}, 1H), 7.58 (dd, J = 7.3, 1.5 \text{ Hz}, 1H), \ldots\)
1H), 7.51-7.46 (m, 2H), 7.31-7.26 (m, 1H), 2.54 (t, J = 7.4 Hz, 2H), 1.78-1.67 (m, 2H), 1.05 (t, J = 6.5 Hz, 2H); 13C-NMR (75 MHz, CDCl3): δ 194.4 (C), 144.1 (C), 141.4 (C), 139.2 (C), 135.6 (C), 134.8 (C), 134.2 (CH), 133.6 (CH), 128.8 (CH), 128.3 (CH), 125.8 (CH), 121.8 (CH), 121.4 (CH), 38.6 (CH3), 24.5 (CH2), 13.0 (CH3); MS (ESI): m/z = 223.1 (M+H)+; HRMS (ESI) calculated for C16H14O: 222.1045, found: 223.1044 (M+H)+.

2-isopropyl-9H-fluoren-9-one (25): Following the general procedure (IV), 25 was prepared from aldimine 17 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow oil (57 mg, 58% yield); IR (Neat): 1710, 1612, 1380 cm⁻¹; 1H-NMR (300 MHz, CDCl3): δ 7.67 (d, J = 1.3 Hz, 1H), 7.63 (dd, J = 7.4, 1.3 Hz, 1H), 7.51-7.47 (m, 3H), 7.38 (dd, J = 7.4, 1.3 Hz, 1H), 7.31-7.25 (m, 1H), 3.23-3.11 (m, 1H), 1.33 (d, J = 6.4 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 194.2 (C), 144.9 (C), 143.2 (C), 141.6 (C), 139.1 (C), 135.4 (C), 134.5 (CH), 130.3 (CH), 127.5 (CH), 125.1 (CH), 121.9 (CH), 121.1 (CH), 119.1 (CH), 34.3 (C), 23.2 (2CH3); MS (ESI): m/z = 223.1 (M+H)+; HRMS (ESI) calculated for C16H14O: 222.1045, found: 223.1042 (M+H)+.

2-tert-butyl-9H-fluoren-9-one (26): Following the general procedure (IV), 26 was prepared from aldimine 18 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow oil (54 mg, 55% yield); IR (Neat): 1712, 1595, 1385 cm⁻¹; 1H-NMR (300 MHz, CDCl3): δ 7.66 (d, J = 1.4 Hz, 1H), 7.59 (dd, J = 7.5, 1.4 Hz, 1H), 7.47-7.33 (m, 4H), 7.27-7.22 (m, 1H), 1.35 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 194.3 (C), 151.9 (C), 144.3 (C), 141.7 (C), 138.4 (C), 135.5 (C), 134.6 (CH), 130.9 (CH), 128.7 (CH), 125.2 (CH), 122.9 (CH), 121.3 (CH), 119.9 (CH), 35.0 (C), 31.4 (3CH3); MS (ESI): m/z = 237.1 (M+H)+; HRMS (ESI) calculated for C17H16O: 236.1201, found: 237.1211 (M+H)+.

9H-fluoren-9-one (27): Following the general procedure (IV), 27 was prepared from aldimine 19 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow solid (46 mg, 47% yield). m.p.: 82-85 °C (lit.20 mp 82-83 °C); Spectroscopic data was identical with that previously reported.20

6H-benzo[d]indeno[2,1-b]furan-6-one (30): Following the general procedure (IV), 30 was prepared from aldimine 29 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Orange yellow solid (42 mg, 66% yield); m.p.: 110-112 °C (lit.21 m.p. 109-110 °C); IR (KBr): νmax 3025, 1720 cm⁻¹; 1H NMR (300 MHz, CDCl3): δ 7.72 (dd, J = 7.9, 0.4 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.61-7.47 (m, 1H), 7.45-7.17 (m, 4H); 13C NMR (75 MHz, CDCl3): δ 179.6 (C), 163.2 (C), 155.9 (C), 144.9 (C), 141.0 (C), 135.3 (C), 135.2 (CH), 128.4 (CH), 127.9 (C), 121.8 (CH), 120.8 (CH), 120.1 (CH), 116.8 (CH), 112.6 (CH); MS (ESI): m/z = 221.2 (M+H)+; HRMS (ESI) calculated for C15H13O2: 220.0524, found: 221.0525 (M+H)+. Spectroscopic data was compared with that previously reported.21
7H-benzo[de]anthracen-7-one (33): Following the general procedure (IV), 33 was prepared from aldimine 31 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow solid\(^\text{18}\) (44 mg, 68% yield); m.p.: 160-162 °C (lit.\(^\text{18}\) m.p. 162-166 °C); IR (KBr): \(\nu_{\text{max}}\) 3040, 1650, 1597 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.77 (d, \(J = 7.6\) Hz, 1H), 8.52 (d, \(J = 7.2\) Hz, 1H), 8.45 (d, \(J = 7.2\) Hz, 1H), 8.32 (d, \(J = 8.0\) Hz, 1H), 8.22 (d, \(J = 8.0\) Hz, 1H), 8.00 (d, \(J = 8.0\) Hz, 1H), 7.88-7.72 (m, 2H), 7.69 (t, \(J = 8.0\) Hz, 1H), 7.54 (t, \(J = 7.7\) Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 183.8 (C), 136.1 (C), 135.1 (CH), 133.5 (CH), 133.0 (C), 131.3 (C), 130.2 (CH), 129.7 (CH), 128.5 (C), 128.2 (CH), 128.1 (CH), 127.9 (C), 126.8 (C), 126.5 (CH), 126.5 (CH), 124.1 (CH), 123.0 (CH); MS (ESI): \(m/z\) = 231.1 (M+H\(^+\)). Spectroscopic data was compared with that previously reported.\(^\text{18}\)

2-methyl-9H-xanthen-9-one (40): Following the general procedure (IV), 40 was prepared from aldimine 37 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Pale yellow oil (76 mg, 74% yield). IR (KBr): \(\nu_{\text{max}}\) 3060, 2920, 2864, 1658 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.27 (dd, \(J = 7.8, 1.6\) Hz, 1H), 8.05 (s, 1H), 7.72-7.67 (m, 1H), 7.49-7.38 (m, 3H), 7.33 (d, \(J = 7.5\) Hz, 1H), 2.41 (s, 3H); \(^{13}\)C-NMR (75 MHz, CDCl\(_3\)): \(\delta\) 177.3 (C), 156.4 (C), 154.3 (C), 147.6 (C), 134.8 (CH), 133.4 (CH), 126.1 (CH), 125.7 (CH), 123.5 (CH), 121.9 (C), 119.2 (C), 118.7 (CH), 118.3 (CH), 20.8 (CH\(_3\)); MS (ESI): \(m/z\) = 211.1 (M+H\(^+\)). Spectroscopic data was compared with that previously reported.\(^\text{2}\)

2-tert-butyl-9H-xanthen-9-one (41): Following the general procedure (IV), 35 was prepared from aldimine 38 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). Yellow oil (67 mg, 68% yield); IR (Neat): \(\nu_{\text{max}}\) 2965, 2867, 1661 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.32-8.28 (m, 2H), 7.77 (dd, \(J = 8.8, 2.5\) Hz, 1H), 7.72-7.67 (m, 1H), 7.49-7.43 (m, 2H), 3.17-3.36 (m, 1H), 1.40 (s, 9H); \(^{13}\)C-NMR (75 MHz, CDCl\(_3\)): \(\delta\) 177.4 (C), 156.5 (C), 154.9 (C), 147.6 (C), 134.8 (CH), 133.5 (CH), 127.4 (CH), 123.7 (CH), 122.7 (CH), 122.0 (C), 121.3 (C), 119.2 (C), 118.1 (CH), 117.8 (CH), 35.4 (C), 31.7 (3CH\(_3\)); MS (ESI): \(m/z\) = 253.1 (M+H\(^+\)). Spectroscopic data was compared with that previously reported.\(^\text{2}\)

9H-xanthen-9-one (42): Following the general procedure (IV), 42 was prepared from aldimine 39 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 90 : 10). White solid\(^\text{24}\) (53 mg, 54% yield); m.p.: 172-174 °C (lit.\(^\text{24}\) m.p. 176-177 °C); IR (KBr): \(\nu_{\text{max}}\) 2920, 1655, 1458 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.30 (d, \(J = 7.9\) Hz, 2H), 7.69-7.64 (m, 2H), 7.42 (d, \(J = 8.4\) Hz, 2H), 7.31 (t, \(J = 7.2\) Hz, 2H); \(^{13}\)C-NMR (75 MHz, CDCl\(_3\)): \(\delta\) 177.2 (C), 156.5 (C), 154.9 (C), 147.6 (C), 134.8 (CH), 133.5 (CH), 127.4 (CH), 123.7 (CH), 122.7 (CH), 122.0 (C), 121.3 (C), 118.1 (CH), 117.8 (CH), 35.4 (C), 31.7 (3CH\(_3\)); MS (ESI): \(m/z\) = 197.1 (M+H\(^+\)). Spectroscopic data was identical with that previously reported.\(^\text{24}\)
General procedure (V) for synthesis of phenanthridines

Aldimine (0.25 mmol) was dissolved in DCE (1 ml) and added in a mixture of PhI(OAc)$_2$ (0.375 mmol) and BF$_3$·OEt$_2$ (0.375 mmol) in DCE (3 ml). The resulting reaction mixture was stirred at room temperature for 5 min and then was refluxed for 30 h at 80 °C and then cooled to room temperature. Diluted with H$_2$O and extracted with diethyl ether (2 x 15 mL). The organic layers were combined, dried over Na$_2$SO$_4$, filtered, and the solvent removed under reduced pressure to afford the residue, which was purified by column chromatography on silica gel (230-400 mesh) using ethyl acetate/hexanes as the eluent to provide the desired product.

8-chloro-6-phenylphenanthridine (49): Following the general procedure (V), 49 was prepared from aldimine 46 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 80 : 20). White solid (57 mg, 58% yield); m.p.: 143-145 °C; IR (Neat): 3062, 2990, 2927, 1606, 1510, 1495, 1466, 1455, 1354, 1250, 1235, 1170, 1032, 830, 777, 735, 726 cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): δ 8.55 (d, J = 7.7 Hz, 1H), 8.51 (d, J = 7.7 Hz, 1H), 8.33 (d, J = 7.3 Hz, 1H), 7.88 (s, 1H), 7.66-7.58 (m, 5H), 7.56-7.54 (m, 3H); 13C-NMR (75 MHz, CDCl$_3$): δ 160.1 (C), 144.2 (C), 139.9 (C), 135.3 (C), 132.6 (C), 131.6 (CH), 130.8 (CH), 129.5 (CH), 128.9 (2CH), 128.7 (2CH), 128.7 (CH), 127.9 (CH), 127.3 (CH), 125.7 (C), 124.2 (C), 122.2 (CH), 121.6 (CH); MS (ESI): m/z = 290.1 (M+H)$^+$; HRMS (ESI) calculated for C$_{20}$H$_{12}$ClN: 289.0658, found: 290.0655 (M+H)$^+$.

8-methyl-6-phenylphenanthridine (50): Following the general procedure (V), 50 was prepared from aldimine 47 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 80 : 20). Yellow oil (56 mg, 57% yield); IR (Neat): $\nu_{	ext{max}}$ 3060, 2920, 1580, 1562, 1460, 1365, 1270, 766, 733, 703 cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): δ 8.58 (d, J = 8.2 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.23 (d, J = 7.8 Hz, 1H), 7.87 (s, 1H), 7.75-7.65 (m, 5H), 7.59-7.52 (m, 3H), 2.51 (s, 3H); 13C-NMR (75 MHz, CDCl$_3$): δ 161.3 (C), 143.8 (C), 137.1 (C), 132.3 (C), 132.6 (C), 131.6 (CH), 130.8 (CH), 128.4 (2CH), 128.2 (CH), 127.2 (CH), 125.3 (C), 124.0 (C), 122.0 (CH), 121.5 (CH), 21.7 (CH$_3$); MS (ESI): m/z = 270.1 (M+H)$^+$; HRMS (ESI) calculated for C$_{20}$H$_{15}$N: 269.1204, found: 270.1206 (M+H)$^+$.

6-phenylphenanthridine (51): Following the general procedure (V), 51 was prepared from aldimine 48 and purified by column chromatography on silica gel (230-400 mesh) using (hexane : EtOAc = 80 : 20). White solid (49 mg, 48% yield); m.p.: 105-106 °C (lit. 109 °C); IR (KBr): ν_{max} 3058, 2920, 2851, 1560, 1482, 1458, 1444, 1310, 1300, 1288, 1135, 1073, 1029, 956, 784, 753, 727, 701, 672 cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): δ 8.64 (d, J = 8.4 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.86-7.56 (m, 9H); 13C-NMR (75 MHz, CDCl$_3$): δ 161.2 (C), 143.7 (C), 139.8 (C), 133.3 (C), 130.5 (CH), 130.2 (CH), 129.7 (2CH), 128.8 (CH), 128.8 (CH), 128.7 (CH), 128.7 (CH), 126.7 (CH), 125.2 (C), 123.6 (C), 122.1 (CH), 121.9 (CH); MS (ESI): m/z = 256.1 (M+H)$^+$; HRMS (ESI) calculated for C$_{18}$H$_{17}$N: 255.1048, found: 256.1044 (M+H)$^+$.

Spectroscopic data was compared with that previously reported.25
References:

Copies of 1H-NMR and 13C-NMR: