Supporting information

Novel fluorescent chemosensing of CN⁻ anion with nanomolar detection using Zn²⁺-isonicotinohydrazide metal complex

Kundan Tayade⁵, Nilesh Khairnar⁵, Shilpa Bothra⁶, Suban K. Sahoo⁶, Jasminder Singh⁷, Narinder Singh⁷, Ratnamala Bendre*⁵, Anil Kuwar*⁵

⁵School of Chemical Sciences, North Maharashtra University, Jalgaon, 425001 (MS) India
⁶Department of Applied Chemistry, SV National Institute Technology, Surat-395007 (Gujrat) India.
⁷Department of Chemistry, Indian Institute Technology, Ropar-140 001 (Punjab) India.

*Corresponding author - E-mail: kuwaras@gmail.com, bendrers@rediffmail.com

Figure S1. A Benesi-Hildebrand methodology for receptor ZnL, $K_a = 3.33 \times 10^5 \text{M}^{-1}$.
Figure S2. A Scatchard methodology for receptor \(\text{ZnL} \), \(K_a = 7.73 \times 10^4 \text{M}^{-1} \).

Figure S3. Connor’s fitting method for receptor \(\text{ZnL} \), \(K_a = 8.62 \times 10^4 \text{M}^{-1} \).
Figure S4. Plot of the emission intensity as a function of the concentrations of CN⁻.

Figure S5. Plot of pH titration of ZnL-CN⁻ complex.
Table S1. Comparison of reported detection limit with present work

<table>
<thead>
<tr>
<th>Solvent System</th>
<th>Detection Limit</th>
<th>Response</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>>20 µM</td>
<td>quenching</td>
<td>1</td>
</tr>
<tr>
<td>water</td>
<td>0.13 ppm</td>
<td>Blue shifting</td>
<td>2</td>
</tr>
<tr>
<td>DMF/H₂O</td>
<td>1.0 µM</td>
<td>Enhancement</td>
<td>3</td>
</tr>
<tr>
<td>CH₃CN:H₂O</td>
<td>0.037 µM</td>
<td>Blue shifting</td>
<td>4</td>
</tr>
<tr>
<td>DMSO/H₂O (1:1, v/v)</td>
<td>5.49 nM</td>
<td>Enhancement</td>
<td>Present Work</td>
</tr>
</tbody>
</table>

References