Enhanced Reducibility and Redox Stability of Fe$_2$O$_3$ in the Presence of CeO$_2$ Nanoparticles

Zhenhua Gu,$^{a,b}$ Kongzhai Li,$^{b,c,*}$ Shan Qing,$^{b,c}$ Xing Zhu,$^{b,c}$ Yonggang Wei,$^{b,c}$ Yongtao Li,$^{d}$ Hua Wang$^{b,c}$

$^a$ Oxbridge College, Kunming University of Science and Technology;
$^b$ State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China;
$^c$ Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
$^d$ School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, China

*Corresponding author:  E-mail address: kongzhai.li@aliyun.com, phone/FAX: 86 871 5153405
Supporting Figure S1. Effect of TPR/OSC redox treatment on the XRD pattern of CeFeO$_3$ sample.
Supporting Figure S2. XPS spectra of Ce 3d for CeO$_2$ and CeFeO$_3$ samples. Both the CeO$_2$ and CeFeO$_3$ samples were prepared at 800 °C.