General Methods. Amino Acids Fmoc-Ala-OH, Fmoc-Val-OH, Fmoc-Phe-OH, and Fmoc-D-Phe-OH were obtained from Sigma-Aldrich. L-Threonine tert-butyl ester hydrochloride, Fmoc-D-allo-Thr(tBu)-OH and Fmoc-Gly-OH were from Chem-impex International, Inc and Fmoc-D-Leu-OH was from Advanced ChemTech.

Solution-phase reactions were done in a round-bottom flask. Organic solvent removal was performed using Eyela rotary evaporator with temperature not exceeding 40°C. Freeze-drying was done using a Labconco Lyophilizer or Labconco CentriVac. Solid-phase reactions were all performed at 25 °C in a glass column (15 mL) with a polyethylene porous disc and a stopcock using a protocol described by Ambiard et al. (2005) with some modifications. Solvents, excess soluble reagents and washings were removed by suction filtration. Deprotection of Fmoc group was done using 20% Piperidine in DMF (1 x 2mL x 2min; 1 x 2mL x 20min). Washings after each step (coupling and deprotection) were done with DCN (3 x 2mL x 2min), MeOH (3 x 2mL x 1min), and DMF (3 x 2mL x 1min).

Analytical HPLC was carried out on Phenomenex Luna C18 reversed-phase column (5 μm one-probe). Chemical shifts are reported in parts per million (ppm) and J (coupling constant) values are expressed in hertz, Hz. Multiplicity is indicated using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), brs (broad singlet), and tt (triple triplet). QSTAR Elite Q-TOF (Applied Biosystems/AB Scieix) Electron Spray Ionization Mass spectrometer (ESI-MS) was used to generate the high-resolution mass spectra.

Purification of compounds by gravity column chromatography was performed using silica gel 60, 0.063-0.200 mm (70-230 mesh, Merck). Monitoring progress of solution-phase reactions was done by thin layer chromatography (TLC) using Silica gel 60 (Merck). The TLC plates were visualized first under a UV lamp set at long wavelength and stained using peroxymanganate staining solution. All solvents used in reactions and column chromatography were A.R. grade.

Analytical HPLC was carried out on Phenomenex Luna C18 reversed-phase column (5 μm one-probe. Chemical shifts are reported in parts per million (ppm) and J (coupling constant) values are expressed in hertz, Hz. Multiplicity is indicated using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), brs (broad singlet), and tt (triple triplet).

Analytical HPLC was carried out on Phenomenex Luna C18 reversed-phase column (5 μm one-probe. Chemical shifts are reported in parts per million (ppm) and J (coupling constant) values are expressed in hertz, Hz. Multiplicity is indicated using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), brs (broad singlet), and tt (triple triplet).

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014
Fmoc-Ala-(Z)-Dhb-OH (5): Fmoc-Ala-(Z)-Dhb-OBu (303 mg, 0.675 mmol) was dissolved in 2 mL TFA-DCM (95:5) and was stirred for 3 hrs at 25 °C and was concentrated in vacuo. The TFA was removed by co-evaporations with DCM and diethyl ether to give Fmoc-Ala-(Z)-Dhb-OH (242 mg, 0.615 mmol, 91.1 % yield). Appearance: White powder; TLC (SiO2, DCM-MeOH 9:1) Rf = 0.19; Analytical HPLC (tR = 20min), DMF (4 x 2mL x 1min). All deprotection solutions were kept for Fmoc monitoring. The Kaiser test was positive after deprotection. The loading, as calculated by Fmoc assay was 1.67 mmol/g, 98.2%.11,27

Nobilamidine B, Propanoyl-D-Phe-D-Leu-Phe-D-a-Thr–Val–Ala–(Z)-Dhb-OH (1): Barlos (chlorotriyl chloride) resin (86.9 mg, 0.148 mmol, 1 eq.; 1.7 mmol/g loading) was placed in a small column (described in 3.2). The resin was swelled by washing with DCM (3 x 2 mL x 1 min). A solution of Fmoc-Ala-(Z)-Dhb-OH (65.5 mg, 0.167 mmol, 1 eq.) and DIEA (77 µL, 0.442 mmol, 2.99 eq.) with the same cycle of washing, deprotection and coupling. In each treatment: DMF (3 x 1mL x 1min), 20% piperidine in DMF (1 x 2mL x 2min), 20% Piperidine in DMF (1 x 2mL x 2min) and DMF (3 x 2 mL x 2min). Fmoc-Ala-(Z)-Dhb-OH (5): Fmoc-Ala-(Z)-Dhb-OH (242 mg, 0.615 mmol, 91.1 % yield). Appearance: White powder; TLC (SiO2, DCM-MeOH 9:1) Rf = 0.19; Analytical HPLC (tR = 20min), DMF (4 x 2mL x 1min). All deprotection solutions were kept for Fmoc monitoring. The Kaiser test was positive after deprotection. The loading, as calculated by Fmoc assay was 1.67 mmol/g, 98.2%.11,27

Fmoc-Ala-(Z)-Dhb-OH (5): Fmoc-Ala-(Z)-Dhb-OBu (303 mg, 0.675 mmol) was dissolved in 2 mL TFA-DCM (95:5) and was stirred for 3 hrs at 25 °C and was concentrated in vacuo. The TFA was removed by co-evaporations with DCM and diethyl ether to give Fmoc-Ala-(Z)-Dhb-OH (242 mg, 0.615 mmol, 91.1 % yield). Appearance: White powder; TLC (SiO2, DCM-MeOH 9:1) Rf = 0.19; Analytical HPLC (tR = 20min), DMF (4 x 2mL x 1min). All deprotection solutions were kept for Fmoc monitoring. The Kaiser test was positive after deprotection. The loading, as calculated by Fmoc assay was 1.67 mmol/g, 98.2%.11,27

Fmoc-Ala-(Z)-Dhb-OH (5): Fmoc-Ala-(Z)-Dhb-OBu (303 mg, 0.675 mmol) was dissolved in 2 mL TFA-DCM (95:5) and was stirred for 3 hrs at 25 °C and was concentrated in vacuo. The TFA was removed by co-evaporations with DCM and diethyl ether to give Fmoc-Ala-(Z)-Dhb-OH (242 mg, 0.615 mmol, 91.1 % yield). Appearance: White powder; TLC (SiO2, DCM-MeOH 9:1) Rf = 0.19; Analytical HPLC (tR = 20min), DMF (4 x 2mL x 1min). All deprotection solutions were kept for Fmoc monitoring. The Kaiser test was positive after deprotection. The loading, as calculated by Fmoc assay was 1.67 mmol/g, 98.2%.
Dorsal Root Ganglion Primary Cell Culture Assay:

The neuroactivity of Nobilamide B was assessed using the dorsal root ganglion primary cell culture assay. DRG cells were harvested from the spine of a 21 day-old mouse using a dissecting microscope and the cells were plated and cultured in a 24-well plate. Individual cells were selected and monitored using the Olympus IX50 fluorescence microscope and Nikon camera attached to a computer running the NIS Elements Basic Research software. Intracellular calcium ions were viewed using Fluo-4 fluorescent probe.

Analytical HPLC profile
Nobilamide B

Conditions: C18 reversed-phase column; 5(A):95(B) to 1(A):0(B) over 40 min (A: 0.1% TFA in ACN, B: 0.1% TFA in H2O at 1.0 mL/min flow rate; wavelength detector set at 220 nm)

Co-elution of synthetic and isolated nobilamide B
Conditions: C18 reversed-phase column; 5(A):95(B) to 1(A):0(B) over 120 min (A: ACN, B: 0.5% TFA in H2O at 1.0 mL/min flow rate; wavelength detector set at 220 nm)
Mass Spectrum of nobilamide B

NMR data of Nobilamide B:

1H NMR
13C NMR

1H-1H COSY
TOCSY

NOESY