SUPPORTING INFORMATION

Extremely Selective and Fluorescent Detection of Cysteine Or Superoxide: with Aliphatic Ester Hydrolysis

Dhiraj P. Murale, a Hwajin Kim, b Wan Sung Choi, b Youngsam Kim, a David G. Churchill* a

a Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea. Fax: (+82) 42-350-2810; Tel: (+82) 42-350-2845; E-mail: dchurchill@kaist.ac.kr

b Department of Anatomy and Neurobiology, Medical Research Center for Neural Dysfunction, Institute of Health Science, School of Medicine, Gyeongsang National University, 92 Chilamdong, Jinju, Gyeongnam 660-751, Republic of Korea.
Experimental Section

General Remarks. All reagents used herein were used as received from commercial suppliers (Aldrich, Acros, and Junsei companies). 1H and 13C NMR spectra were acquired using a Bruker Avance 400 MHz spectrometer. TMS was used as an internal standard. 1H and 13C NMR spectral signals were calibrated internally by the respective protio impurity or carbon resonance of the NMR spectroscopic solvent, e.g., DMSO-d_6. ESI-mass spectrometry was performed on a VG AUTOSPEC ULTIMA by the research support staff at KAIST. This instrument possesses a trisector double focusing magnetic sector analyzer and was operated at a resolution of 80,000. Absorption spectra were measured using a JASCO V–530 UV/Vis spectrophotometer. Fluorescence measurements were carried out with a Shimadzu RF–5301pc spectrofluorophotometer.
Synthesis of probe 1. In a 100 mL round bottom flask, Fluorescein (0.50 g, 1.5 mmol) and vinylacetic acid (0.25 mL, 3.0 mmol) were dissolved up in 30 mL of tetrahydrofuran. Then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (0.69 mg, 3.61 mmol) and 4-dimethylaminopyridine (DMAP) (0.367 mg, 3.01 mmol) were added at room temperature. The reaction mixture was allowed to react at room temperature overnight; after this time, the solvent was removed under pressure. The obtained crude material was subjected to column chromatography and purified by using hexane: ethyl acetate (8:2) as an eluent. Probe 1 was obtained as a white solid (0.47 g, 67 % yield).

1H NMR spectroscopy: (400 MHz, CDCl$_3$): 8.10 (d, $^3J_{(H,H)}$ = 7.24 Hz, 1H), 7.69-7.60 (2H, m), 7.22-7.12 (5H, m), 6.84 (d, $^3J_{(H,H)}$ = 1.52 Hz, 4H), 6.03 (d, $^3J_{(H,H)}$ = 15.6 Hz, 2H), 1.95 (dd, $^4J_{(H,H)}/^3J_{(H,H)}$ = 1.64, 6.92 Hz, 6H).

13C NMR spectroscopy: (100 MHz, CDCl$_3$): 169.11, 164.10, 152.87, 152.20, 151.57, 147.93, 135.30, 130.06, 128.86, 126.13, 125.15, 124.07, 121.59, 117.83, 116.30, 110.41, 81.76, 18.27.

ESI-MS: [Fig. S3] probe-1 [M+Na]$^+$ = 491.1107 (calc.), 491.1101(exp.)

ESI-MS: [Fig. S4] of probe 1 + L-cys [M+H]$^+$ = 333.068 (calc.), 333.075 (exp.) [Fluorescein]
Analysis of Cys in living cells. A human neuroblastoma cell line, SH-SY5Y, was grown in a 1:1 mixture of Eagle’s Minimum Essential Medium, and Ham’s F12 Medium supplemented with 10 % FBS, 100 U/mL penicillin and 100 μg/mL streptomycin and incubated in a humidified 5 % CO₂ incubator at 37°C. Cells were seeded in a 24-well plate in ~80 % confluence for one day before the experiments. Cells were incubated with probe 1 (1~20 μM) or vehicle (DMSO) for 1 h, washed with PBS. For the N-ethyl maleimide (NEM) treated samples, cells were pre-incubated with NEM (0.25 mM) for 30 min. Cells were washed with PBS before fluorescence imaging. Fluorescence images of the cells were obtained by an epifluorescence microscope (Olympus, JP IX-71). The excitation source was a 490 nm laser and all images were taken under the same experimental conditions to minimize variations in fluorescence intensity.
Fig. S1. 1H NMR spectrum of Probe 1.
Fig. S2a. 13C NMR spectrum of Probe 1.
Fig. S2b. 13C NMR spectrum of Probe 1 (EXPANDED VIEW).
Fig. S3. ESI–mass spectrum of Probe 1.
Fig. S4. ESI–mass spectrum of Probe 1 + dissolved cysteine. This data aided in identifying fluorescein as a final product.
Fig. S5. 1H NMR spectrum of probe 1 and probe 1a with 0.2 equiv of DMAP (4-dimethylaminopyridine).
Fig. S6. Relative fluorescence intensity of compound 1 (4.0 × 10⁻⁶ M, buffered H₂O:DMSO 80:20; pH 7.4 PBS) with Cys (~10 equiv) with other amino acids (from left to right: A–compound, B–comp + cys, C–comp + cys + GSH, D–comp + cys + GSH, E–comp + cys + N–acetyl–L–Cys (~10 equiv). $\lambda_{exc} = 490$ nm. Slit width = 1.5.
Fig. S7. Detection limit determinations for cysteine calculated from the linear fit (33.3 – 266 μM in water).
Fig. S8. Proposed sensing mechanism with probe 1a.

Fig. S9. Time–dependent emission spectra of probe (2.0 × 10⁻⁶ M) with Cys (200 μM in water) λ_{exc} = 490 nm) slit width Ex. & Em. = 1.5 nm.
Fig. S10. Emission spectra of probe (4.0 × 10^{-6} M, buffered H_{2}O: DMSO 80:20; pH 7.4 PBS) with amino acids L–Cys, Hcy, N–acetyl–L–Cys and GSH (66 μM in water) incubated for 1 h at RT. Slit width for Ex. & Em. = 1.5 nm.

Fig. S11. Relative fluorescence intensity of probe-1 (4 × 10^{-6} M, H_{2}O: DMSO 80:20;) with KO_{2} and the presence of other interfering ROS (A) comp, (B) KO_{2}, (C) KO_{2} + NaOCl, (D) KO_{2} + H_{2}O_{2}, (E) KO_{2} + \cdotOH, (F) KO_{2} + tBuOOH, (G) KO_{2} + O'Bu, (~10 equiv) incubated for 30 min at RT. λ_{exci} = 490 nm.

END