Supporting Information

A practical one-pot synthesis of coumarins in aqueous sodium bicarbonate via intramolecular Wittig reaction at room temperature

Ningaraddi S. Belavagi, Narahari Deshapande, Manjunath G. Sunagar and Imtiyaz Ahmed M. Khazi*

Address: Department of Chemistry, Karnatak University Dharwad - 580003, Karnataka, India

*Corresponding author: Tel.: +91 836 2215286; fax: +91 836 2771275

E-mail address: drimkorgchem@gmail.com

Table of Contents

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Information ..</td>
<td>S2</td>
</tr>
<tr>
<td>2</td>
<td>Experimental procedure and spectral data of compounds</td>
<td>S2 – S8</td>
</tr>
<tr>
<td>3</td>
<td>References ...</td>
<td>S9</td>
</tr>
<tr>
<td>2</td>
<td>1H NMR and 13C NMR Spectra of representative compounds</td>
<td>S10 - S19</td>
</tr>
</tbody>
</table>
General Information

All reagents were of analytical grade and were used directly. Thin-layer chromatography (TLC) was performed on silica gel plates (60 F254; Merck). Column chromatography was performed using silica gel (60–120 mesh size; Merck). Melting points were determined in open capillaries and are uncorrected. The IR spectra were recorded on Nicolet Impact 410 FT IR spectrophotometer using KBr pellets. 1H and 13C NMR were recorded on Bruker 300-MHz and 400-MHz FT NMR spectrometer in CDCl$_3$ and DMSO-d$_6$ by using TMS as internal standard.

Experimental Section:

General Procedure for the synthesis of 2-formylphenyl 2-bromoacetates (2a-h):

A modification of a literature method1 was used. Salicylaldehyde (1 equiv) was added dropwise during 15 min at 0 °C to a suspension of sodium hydride (1.1 equiv) in THF (4 mL per 1 mmol of salicylaldehyde). The resulting pale yellow, viscous slurry was stirred for 2 h, and the 2-bromoacetyl bromide (1.2 equiv) was added dropwise over 10 min at 0 °C. After 25 min, the resulting white suspension of NaBr was removed by filtration; the solvent was evaporated, and the residue was quenched with saturated NH$_4$Cl (10 mL) solution and then extracted with ethyl acetate (2 x 10mL), the combined organic extracts were washed with H$_2$O (20 mL), brine (20 mL) and dried over Na$_2$SO$_4$. The solvent was evaporated under reduced pressure to afford the 2-formylphenyl 2-bromoacetates (2a-h) with 80-90% yield with sufficient purity for the next step reaction.

2-formylphenyl 2-bromoacetate (2a)

![Chemical Structure](image)

Yield: 85%; colorless oil; IR (KBr): 1765, 1702, 1276, 1254, 1196, 1118 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 10.12 (s, 1H), 7.89 (d, $J = 8.0$ Hz, 1H), 7.65 (m, 1H), 7.44 (t, 1H), 7.22 (d, $J = 8.0$ Hz, 1H), 4.18 (s, 2H); 13C NMR (400 MHz, CDCl$_3$): δ 188.9, 165.5, 150.6, 135.4, 131.9, 127.6, 126.9, 122.9, 25.2;
4-chloro-2-formylphenyl 2-bromoacetate (2b)

\[
\begin{array}{c}
\text{Cl} \\
\text{H} \\
\text{O} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 83%; low melting solid; IR (KBr): 1767, 1705, 1278, 1257, 1200, 1119, 810 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 10.10 (s, 1H), 7.79 (d, \(J = 8.0\) Hz, 1H), 7.54 (dd, 1H), 7.12 (d, \(J = 8.0\) Hz, 1H), 4.08 (s, 2H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 188.9, 165.5, 150.6, 135.4, 131.8, 130.5, 123.1, 25.2;

4-bromo-2-formylphenyl 2-bromoacetate (2c)

\[
\begin{array}{c}
\text{Br} \\
\text{H} \\
\text{O} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 83%; low melting solid; IR (KBr): 1763, 1696, 1278, 1257, 1200, 1119, 640 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 10.10 (s, 1H), 8.01 (d, \(J = 8.0\) Hz, 1H), 7.72 (dd, 1H), 7.14 (d, \(J = 8.0\) Hz, 1H), 4.10 (s, 2H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 188.9, 165.5, 150.6, 139.4, 134.5, 124.2, 120.1, 25.2;

2-formyl-4-methylphenyl 2-bromoacetate (2d)

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 88%; colorless oil; IR (KBr): 1761, 1698, 1278, 1257, 1200, 1119, 640 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 10.10 (s, 1H), 7.82 (d, \(J = 8.0\) Hz, 1H), 7.42 (dd, 1H), 7.14 (d, \(J = 8.0\) Hz, 1H), 4.10 (s, 1H), 2.4 (s, 3H); \(^{13}\)C NMR (300 MHz, CDCl\(_3\)): \(\delta\) 188.9, 165.5, 150.6, 135.4, 135.2, 134.5, 130.2, 121.3, 25.2, 24.1;
2-formyl-4-methoxyphenyl 2-bromoacetate (2e)

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 90%; colorless oil; IR (KBr): 1760, 1696, 1278, 1257, 1200, 1119, 640 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 10.10 (s, 1H), 7.42 (d, \(J = 8.0\) Hz, 1H), 7.22 (dd, 1H), 7.04 (d, \(J = 8.0\) Hz, 1H), 4.10 (s, 2H), 3.9 (s, 3H); \(^1^3\)C NMR (300 MHz, CDCl\(_3\)): \(\delta\) 188.9, 165.5, 159.6, 146.4, 136.2, 124.5, 121.2, 115.3, 25.2, 60.5;

5-(dimethylamino)-2-formylphenyl 2-bromoacetate (2f)

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 84%; low melting solid; IR (KBr): 1660, 1690, 1278, 1257, 1200, 1119, 640 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 9.7 (s, 1H), 7.52 (d, \(J = 8.8\) Hz, 1H), 6.48 (dd, 1H), 6.22 (s, 1H), 4.10 (s, 2H), 2.9 (s, 6H); \(^1^3\)C NMR (300 MHz, CDCl\(_3\)): \(\delta\) 189.5, 166.5, 157.9, 155.4, 133.2, 125.2, 112.8, 106.1, 40.2, 25.2;

5-(diethylamino)-2-formylphenyl 2-bromoacetate (2g)

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{Br}
\end{array}
\]

Yield: 85%; low melting solid; IR (KBr): 1660, 1690, 1278, 1257, 1200, 1119, 640 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 9.64 (s, 1H), 7.54 (d, \(J = 8.8\) Hz, 1H), 6.48 (dd, \(J = 9.0\) Hz, 2.4 Hz, 1H), 6.22 (d, \(J = 2.4\) Hz, 1H), 4.12 (s, 2H), 3.4 (q, 4H), 1.15 (t, 6H); \(^1^3\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 189.5, 166.5, 157.9, 155.4, 133.2, 125.2, 112.8, 106.1, 44.2, 25.2, 13.1;
1-formyl naphthalen-2-yl 2-bromoacetate (2h)

Yield: 82%; low melting solid; IR (KBr): 1775, 1702, 1278, 1257, 1200, 1119 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 10.71 (s, 1H), 9.01 (d, \(J = 8.4\) Hz, 1H), 8.05 (d, \(J = 8.8\) Hz, 1H), 7.82 (d, \(J = 8.0\) Hz, 1H), 7.61 (t, \(J = 7.2\) Hz, 1H), 7.50 (t, \(J = 7.2\) Hz, 1H), 7.22 (dd, \(J = 8.8\) Hz, 3.2 Hz, 1H), 4.11 (s, 2H); \(^1^3\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 191.0, 167.5, 158.9, 136.4, 131.2, 130.2, 129.6, 128.2, 127.4, 126.4, 124.4, 120.4, 25.2;

General Procedure for the Preparation of Coumarins (4a-h):

A mixture of 2-formylphenyl 2-bromoacetates (2a-h, 2 mmol) and triphenylphosphine (2 mmol) in ethylacetate (5 mL) was stirred at 60 °C for 2 h. The progress of the reaction was monitored by TLC (eluent: EtOAc–hexane, 2:8). The mixture was cooled to room temperature and the separated solid Wittig salt was filtered and washed with cold ethyl acetate (2 mL). The obtained Wittig salt (3a-h) was taken in saturated aqueous NaHCO\(_3\) (5 mL) and stirred vigorously for 30 min at room temperature. The progress of the reaction was monitored by TLC (eluent: EtOAc–hexane, 2:8). After completion of the reaction, the crude reaction mixture was extracted with ethyl acetate (3 × 10 mL), the combined organic layer was washed with H\(_2\)O (10 mL), and dried over Na\(_2\)SO\(_4\). The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica (60–120, eluent: EtOAc–hexane, 2:8) to afford pure products 4a-h with 65–75% yield. The physical data (mp, NMR) of all the known compounds were found to be identical with those reported in the literature.
2H-chromen-2-one (4a)

Yield: 70%; White solid; mp: 68-69 °C; IR (KBr): 1696, 1602, 1383, 1237, 1067, 985, 856, 758, 572, 525, 426 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 9.6 Hz, 1H), 7.56-7.48 (m, 2H), 7.35-7.26 (m, 2H), 6.42 (d, J = 9.6 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 161.2, 154.4, 143.9, 132.3, 128.3, 124.8, 119.2, 117.3, 117.1;

6-chloro-2H-chromen-2-one (4b)

Yield: 68%; mp 152–153 °C; IR (KBr): 1699, 1602, 1383, 1237, 1067, 950, 895, 830, 820, 730, 590, 530, 500 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 9.6Hz, 1H), 7.41-7.43 (m, 2H), 7.21 (d, J = 7.0 Hz, 1H), 6.39 (d, J = 9.6 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 159.5, 151.9, 141.7, 131.3, 129.2, 126.6, 119.3, 117.8, 117.3;

6-bromo-2H-chromen-2-one (4c)

Yield: 68%; mp 162–164 °C; IR (KBr): 1690, 1600, 1383, 1237, 1067, 950, 895, 830, 730, 620, 590, 530, 500 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.57 (m, 3H), 7.15 (d, J=7.0 Hz, 1H), 6.39 (d, J = 9.6 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 159.9, 152.9, 142.1, 134.6, 130.2, 120.3, 118.6, 117.8, 116.9;

6-methyl-2H-chromen-2-one (4d)

Yield: 72%; colorless solid; mp: 73-75 °C; IR (KBr): 1717, 1684, 1575, 1380, 1262, 1189, 1167, 1105, 911, 841, 820, 813 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.69 (d, J = 9.3 Hz, 1H), 7.40-7.20 (m, 3H), 6.43 (d, J = 9.3 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (300 MHz, CDCl₃) δ 161.0, 152.0, 143.4, 134.1, 132.8, 127.6, 118.5, 116.5, 116.4, 20.7;
6-methoxy-2H-chromen-2-one (4e)

Yield: 75%; colorless solid; mp: 100-102 °C; IR (KBr): 1705, 1570, 1491, 1451, 1286, 1261, 1185, 886, 808, 684 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.64 (d, \(J = 9.6\) Hz, 1H), 7.22 (d, \(J = 9.0\) Hz, 1H), 7.07 (dd, \(J = 9.0, 2.7\) Hz, 1H), 6.89 (d, \(J = 2.7\) Hz, 1H), 6.35 (d, \(J = 9.9\) Hz, 1H), 3.82 (s, 3H); \(^{13}\)C NMR (300 MHz, CDCl\(_3\)): \(\delta\) 160.9, 155.9, 148.3, 143.2, 119.4, 119.0, 117.7, 116.9, 109.9, 55.7;

7-(dimethylamino)-2H-chromen-2-one (4f)

Yield: 72%; purple powder; mp: 161-162 °C; IR (KBr): 1685, 1570, 1491, 1451, 1286, 1261, 1185, 886, 808, 684 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.54 (d, \(J = 9.3\) Hz, 1H), 7.25 (d, \(J = 2.8\) Hz, 1H), 6.61 (dd, \(J = 8.7\) Hz, 2.3 Hz, 1H), 6.49 (d, \(J = 2.2\) Hz, 1H), 6.06 (d, \(J = 9.3\) Hz, 1H), 3.82 (s, 3H), 2.9 (s 6H); \(^{13}\)C NMR (300 MHz, CDCl\(_3\)): \(\delta\) 162.1, 156.3, 152.9, 143.7, 128.5, 109.8, 109.0, 108.8, 98.1, 40.2;

7-(diethylamino)-2H-chromen-2-one (4g)

Yield: 72%; yellowish powder; mp: 93-95 °C; IR (KBr): 1680, 1570, 1491, 1451, 1286, 1261, 1185, 886, 808, 684 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.45 (d, \(J = 9.2\) Hz, 1H), 7.13 (d, \(J = 2.4\) Hz, 1H), 6.48 (d, \(J = 8.8\) Hz, 1H), 6.42 (d, \(J = 2.0\) Hz, 1H), 5.95 (d, \(J = 9.2\) Hz, 1H), 3.33 (q, \(J = 14.2\) Hz, 4H), 1.14 (t, \(J = 6.8\) Hz, 6H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 162.3, 156.7, 150.7, 143.7, 128.7, 109.1, 108.6, 108.3, 97.5, 44.7, 12.4;
3H-benzo[f]chromen-3-one (4h)8

Yield: 70%; yellowish powder; mp: 117-119 °C; IR (KBr): 1705, 1278, 1257, 1200, 1119 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ 8.47 (d, $J = 9.7$ Hz, 1H), 8.21 (d, $J = 8.4$ Hz, 1H), 7.97 (d, $J = 9.0$ Hz, 1H), 7.90 (d, $J = 8.1$ Hz, 1H), 7.71-7.66 (m, 1H), 7.59-7.54 (m, 1H), 7.44 (d, $J = 9.2$ Hz, 1H), 6.56 (d, $J = 9.8$ Hz, 1H); 13C NMR (400 MHz, CDCl$_3$): δ 160.9, 153.9, 139.1, 133.1, 130.3, 129.0, 128.3, 126.1, 121.3, 117.1, 115.6, 113.0;
References

NMR Data: