Electronic Supplementary Information for

A Ratiometric Fluorescent Probe for Rapid and Sensitive Visualizing Hypochlorite in Living Cells

Jiayu Zha, a Boqiao Fu, b Caiqin Qin, b Lintao Zeng * a,b and Xichao Hu * b

a School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China. Fax: +86 22 60214252; E-mail: zlt1981@126.com

b Department of Chemistry and Material Sciences, Hubei Engineering University, Hubei Xiaogan 432000, PR China. Fax: +86 712 2345265.

Table of Contents

1. Experimental section

2. Synthesis of probe CMCY

3. Fluorescence responses of CMCY to various species in PBS solution

4. Cell culture and fluorescence imaging

5. The proposed sensing mechanism of probe CMCY to ClO−

6. 1H NMR, 13C NMR spectra and HRMS spectrum
1. Experimental section

1.1 General

Reagents and Instrumentation. All chemicals and solvents were of analytical grade and were used without further purifications. The 1H NMR and 13C NMR spectra were recorded on a Bruker AV-400 spectrometer with tetramethylsilane (TMS) as the internal standard. The chemical shift was recorded in ppm and the following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Mass spectra were measured on a HP-1100 LC-MS spectrometer. UV-vis spectra were recorded on Hitachi spectrometer. Fluorescence spectra were recorded on a Hitachi FL-4500 fluorometer. Fluorescent images were acquired on a Nikon A1 confocal laser-scanning microscope with a 60 objective lens. The solvents used for UV-vis and fluorescence measurements are of HPLC grade.

1.2 Synthesis of probe

\[
\begin{align*}
\text{ON} & \quad \text{O} \\
\text{N} & \quad \text{I} \\
\text{O} & \quad \text{N} \\
\text{I} & \quad \text{O} \\
\text{C} & \quad \text{M} \\
\text{C} & \quad \text{Y} \\
\text{H} & \quad \text{A} \\
\text{c} & \quad \text{E} \\
\text{t} & \quad \text{O} \\
\text{H}
\end{align*}
\]

1-Methyl-2,3,3-trimethyl-3H-indolium (133 mg, 0.44 mmol) and diethlyamino coumarin-aldehyde (104 mg, 0.42 mmol) were placed in a round bottom flask with 20 mL anhydrous ethanol. Then, two drops of acetic acid and piperidine were added. The reaction mixture was refluxed for 6 h. After the reaction was completed, the solvent was removed under reduced pressure, and the resulting residue was purified by column chromatography. (CH$_2$Cl$_2$/C$_2$H$_5$OH = 15:1) on silica gel to give the product CMCY as a purple powder (142 mg, yield: 61%). 1H NMR (400 MHz, CDCl$_3$) δ 10.11 (s, 1H), 8.62 (d, $J = 16.0$ Hz, 1H), 8.15 (d, $J = 10.0$ Hz, 1H), 8.04 (d, $J = 16.0$ Hz, 1H), 7.60 – 7.50 (m, 3H), 7.45 (t, $J = 7.6$ Hz, 1H), 6.72 (dd, $^1J = 7.2$ Hz, $^3J = 2.4$ Hz, 1H), 6.48 (d, $^3J = 2.4$ Hz, 1H), 4.33 (s, 3H), 3.54 (q, $J = 7.2$ Hz, 4H), 1.85 (s, 6H), 1.30 (t, $J = 7.2$ Hz, 6H). 13C NMR (100 MHz, d$_6$-DMSO): δ 181.3, 169.8, 158.0, 154.4, 150.6, 149.7, 143.5, 142.4, 132.8, 129.4, 129.0, 123.2, 114.9, 112.7, 111.8,
HRMS (ESI) m/z calcd for C_{26}H_{29}N_{2}O_{2} (M^+): 401.2260. Found 401.2236.

1.3 Determination of the detection limit

The fluorescence spectrum of CMCY was measured three times and the standard deviation of a blank measurement was achieved. The fluorescence intensity ratio (I_{480}/I_{631}) was plotted as a concentration of ClO−. The detection limit was calculated by using the equation: detection limit = 3 \sigma/k: where \sigma is the standard deviation of the blank measurement, k is the slope between the fluorescence ratios versus ClO− concentration.

1.4 Cell culture and fluorescence imaging

HeLa cells (Perking Union Medical College, China) were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (Invitrogen Corp., Carlsbad, CA) and penicillin (100 units/mL)-streptomycin (100 μg/mL) liquid (Invitrogen Corp., Carlsbad, CA) at 37 °C in a humidified incubator containing 5% CO\textsubscript{2} in air. The cells were incubated for 2 days before dye loading on an uncoated 35 mm diameter glass-bottomed dish (D110100, Matsunami, Japan). Then, the cells were rinsed with PBS, incubated with DMEM containing 10% FBS, 5 μM probe CMCY for 10 min at 37 °C, washed with PBS twice, and mounted on the microscope stage. Fluorescence images were captured using a Nikon A1 Application. The cells were furthermore incubated with 50 μM Ca(ClO)\textsubscript{2} for 30 minutes, and then washed with PBS twice for confocal laser-scanning microscopy measurement. Fluorescence images were captured using a Nikon A1 Application.
Fig. S1 (a) Fluorescence responses of CMCY (10 µM) to various species (10 equiv.) in PBS solution (50 mM, pH = 7.40); (b) Fluorescence response of CMCY (10 µM in PBS solution, pH = 7.4) to H₂O₂ with various concentrations. 1, blank; 2, 10 equiv. ClO⁻; 3, 20 equiv. H₂O₂; 4, 40 equiv. H₂O₂; 5, 60 equiv. H₂O₂; λₑₓ = 460 nm. The data were collected after ClO⁻ was added into the CMCY (10 µM) solution for 20 minute.
Fig. S2 The proposed mechanism for sensing of ClO⁻
Fig. S3 1H NMR spectrum of CMCY in CDCl$_3$ (400 M Hz)

Fig. S4 13C NMR spectrum of CMCY in d$_6$-DMSO (100 M Hz)
Fig. S5 HR-MS (ESI) spectrum of CMCY