Electronic Supplementary Information

Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor

Pengfei Wang, Hui Liu, Qiangqiang Tan*, and Jun Yang*

a State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Tel.: 86-10-6252 9377; Fax: 86-10-8254 5008; E-mail: qtan@ipe.ac.cn (Q.T.); Fax: 86-10-8254 4814; Tel: 86-10-8254 4915; E-mail: jyang@ipe.ac.cn (J.Y.)
b University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China

Financial support from the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-341), the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (Grant No.: 21173226, 21376247), and State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (MPCS-2012-A-11) is gratefully acknowledged.
Fig. S1. Histogram of RuO$_2$/C nanocomposites derived from a solvothermal approach: $\bar{d} = 1.80$ nm, $\sigma = 0.33$ nm, $\bar{\sigma} = 16.5\%$.
Fig. S2. A typical EDX image of the precipitates obtained from the mixture of aqueous RuCl$_3$ and HAuCl$_4$ solution with Ru/Au molar ratio of 3/1.
Fig. S3. Histogram of RuO$_2$-Au/C nanocomposites derived from a mutual oxidation-reduction approach: $\bar{d} = 1.62$ nm, $\sigma = 0.24$ nm, $\bar{\sigma} = 14.8\%$.