Supporting Information

Enhanced visible-light-induced photocatalytic performance of novel ternary semiconductor coupling system based on hybrid Zn-In mixed metal oxide/g-C$_3$N$_4$ composites

Meng Lan, Guoli Fan, Lan Yang, Feng Li*
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. BOX 98, Beijing, 100029, P.R. China

Fig. S1 FT-IR spectra of pure g-C$_3$N$_4$ (a), 5-MMO/C$_3$N$_4$ (b), 3-MMO/C$_3$N$_4$ (c) 1-MMO/C$_3$N$_4$ (d) and ZnIn-MMO (e). In the case of ZnIn-MMO/g-C$_3$N$_4$ composites, there are the strong absorption peaks for the typical C=N and C-N stretching modes of the C$_3$N$_4$ heterocycles at 1238, 1323, 1410, 1561, and 1658 cm$^{-1}$ and the characteristic breathing mode of the s-triazine units at 806 cm$^{-1}$.

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2014
Fig. S2 Absorption changes of RhB solution during the photo-degradation process over the 3-MMO/C₃N₄ sample under visible light irradiation.

Fig. S3. Typical TEM image of 5-MMO/C₃N₄
Fig. S4. Pseudo-first-order kinetic for the photo-degradation of RhB over different samples under visible light irradiation.

Fig. S5. UV-vis diffuse absorption spectra of 3-MMO/C$_3$N$_4$ before use and after eight cycles.
Fig. S6 Room temperature PL emission spectra of g-C$_3$N$_4$ (a) 3-MMO/C$_3$N$_4$ (b) and ZnIn-MMO (c). Inset shows the enlarged PL emission spectra of 3-MMO/C$_3$N$_4$ (b) and ZnIn-MMO (c).