Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

Phillip Malcho, Eduardo J. García-Suárez, and Anders Riisager*

Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

*Corresponding author: E-mail address: ar@kemi.dtu.dk (A. Riisager); Fax: (+45) 45883136

*Corresponding author: Tel: +45 45252233; Fax: +45 45883136; E-mail: ar@kemi.dtu.dk

Supporting Information

Table of contents

S1 TGA profiles a) [EMIm]Cl, b) [BMIm]Cl, c) [OMIm]Cl, d) [EMIm]OAc, e) [BMIm]OAc and f) [Rh(dppp)$_2$]Cl

S2 1H NMR spectra a) pure ionic liquid; b) extracted ether-phase after reaction; c) ionic liquid phase after reaction

S3 Comparison of 1H NMR spectra of the pure ionic liquid and extracted ether-phase after reaction

S4 Comparison of 1H NMR spectra of pure ionic liquid and extracted ionic liquid phase after reaction
S1. TGA profiles for a) [EMIm]Cl, b) [BMIm]Cl, c) [OMIm]Cl, d) [EMIm]OAc, e) [BMIm]OAc and f) [Rh(dppp)$_2$]Cl. Heating rate of 10 °C/min from room temperature to 600 °C.
Pure Ionic liquid
ether-phase after reaction
S2 1H NMR spectra a) pure ionic liquid; b) extracted ether-phase after reaction; c) ionic liquid phase after reaction
superimpose spectra: pure ionic liquid (blue) and ether-phase after reaction (green)
Comparison of 1H NMR spectra of the pure ionic liquid and extracted ether-phase after reaction
superimpose spectra: pure ionic liquid (blue) and ionic liquids phase after reaction (red)

S4 comparison of 1H NMR spectra of pure ionic liquid and extracted ionic liquid phase after reaction