Supplementary information for:

Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi$_2$Te$_3$ composites

Hyeon Jin Yu,‡a,b Mahn Jeong,‡a Young Soo Lim,*a Won-Seon Seo,a O-Jong Kwon,c Cheol-Hee Park,*c and Hae-Jin Hwangb

a Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Seoul, Republic of Korea, b LG Chem/Research Park, Daejeon, Republic of Korea, and c Division of Materials Science and Engineering, Inha University, Seoul, Republic of Korea.

‡H.J. Yu and M. Jeong contributed equally to this work

E-mail: yslim@kicet.re.kr (Y.S. Lim) and pmoka@lgchem.com (C.-H. Park)
Figure S1. XPS Cu 2p$_{3/2}$ spectrum of Cu$_{0.04}$Bi$_2$Te$_3$ composite.

Although the XPS spectrum was not very sharp due to the small content of Cu in the composite, the binding energy exhibited a maximum peak around 933 eV and it was quite consistent to the reported values. In literature, the binding energy of Cu has been reported to be ~ 933 eV regardless of its oxidation state (Cu, Cu$_2$Te, CuTe).$^{S1-S3}$ Especially, Teeter reported that the binding energies for Cu0, Cu$^{1+}$ and Cu$^{2+}$ were equal within about 0.05 eV.S1 Although the identification of the oxidation state of the doped Cu was not possible due to the similarity in their binding energies, our result clearly reveals the existence of Cu-Te bonding in the Cu$_{x}$Bi$_2$Te$_3$ composite.

References

