Electronic Supplementary Information

Fe$_3$O$_4$-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation

Hui Wang,a Huan Jiang,a Sha Wang,ab Wenbing Shi,c Jianchuan He,a Hong Liu,b Yuming Huanga

a Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
c Chongqing Key Laboratory of Inorganic Special Functional Materials; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, PR China
Supplemental Experimental

1. Electron spin resonance

220 μL samples were prepared at room temperature by adding 50 μL of 3% H₂O₂, 20 μL of 0.2 M 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and 150 μL of water into a 1 mL plastic tube in the presence of 40 mg Fe₃O₄-MWCNTs or Fe₃O₄ MNPs, respectively. The prepared sample solution was transferred to a quartz capillary tube and placed in the ESR cavity. DMPO was used to trap the •OH radicals to form the DMPO/•OH spin adduct. The ESR spectra were obtained on a Bruker ESR E500 with microwave bridge (receiver gain, 60dB; modulation amplitude, 3 Gauss; microwave power, 10 mW; microwave frequency, 9.85 GHZ; Sweep time, 40.96 s).

As can be seen from Figure S3, similar to ESR spin-trapping spectra of the Fe₃O₄ MNPs, the ESR spectra in the presence of Fe₃O₄-MWCNTs displayed a 4-fold characteristic peak of the DMPO-•OH adduct with an intensity ratio of 1:2:2:1. The produced radicals attack MB molecules, resulting in decoloration.

2. Hydroxyl radical formation with terephthalic acid as a fluorescence probe

0.4 M H₂O₂, 0.6 mM terephthalic acid and different loadings of the Fe₃O₄-MWCNTs were first incubated at 25 °C for 12 h. The Fe₃O₄-MWCNTs were then removed from the reaction solution by an external magnetic field. The resulting solutions were used for fluorometric measurement.

Hydroxyl radical can react readily with terephthalic acid, forming highly fluorescent 2-hydroxy terephthalic acid that can be identified from fluorescence spectrometer. As shown in new Figure S4, the fluorescence intensity was weak when there was no Fe₃O₄-MWCNTs. And the gradual increase of the fluorescence intensity was observed as the loading of the Fe₃O₄-MWCNTs increased, suggesting that the amount of the generated •OH increased by the catalysis of
Fe$_3$O$_4$-MWCNTs.

References

Figure S1. FT-IR spectra of Fe$_3$O$_4$ (a), MWCNTs (b) and Fe$_3$O$_4$-MWCNTs.

Figure S2. VSM magnetization curves of Fe$_3$O$_4$ and Fe$_3$O$_4$-MWCNTs.
Figure S3. ESR spin-trapping spectra of Fe₃O₄-MWCNTs at 0.4 mg mL⁻¹ (black) and Fe₃O₄ at 0.4 mg mL⁻¹ (red) in presence of H₂O₂.

Figure S4. The effect of Fe₃O₄-MWCNTs loading (g/L) on the formation of hydroxyl radicals with terephthalic acid as a fluorescence probe. Reaction conditions: terephthalic acid concentration: 0.6 mM; H₂O₂ concentration: 0.4 M; reaction temperature: 25 °C; reaction time: 12 h
Figure S5. Effect of Fe$_3$O$_4$-MWCNTs loading on the removal of different concentrations of MB. Reaction conditions: pH 5.5, 0.4 M H$_2$O$_2$.

Table S1. Leaching of Fe after suspending 7.5 mg Fe$_3$O$_4$-MWCNTs in 25 mL water with different pH for 12 h. Numbers in parentheses represent relative standard deviation (n=2)

<table>
<thead>
<tr>
<th>pH</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The released Fe$^{3+}$ (mg L$^{-1}$)</td>
<td>4.78(0.10)</td>
<td>2.14(0.29)</td>
<td>1.66(0.01)</td>
<td>0.78(0.03)</td>
<td>0.25(0.02)</td>
</tr>
<tr>
<td></td>
<td>The leaching rate of Fe$^{3+}$ (%)</td>
<td>6.00 (0.13)</td>
<td>2.69(0.36)</td>
<td>2.08(0.01)</td>
<td>0.97(0.04)</td>
<td>0.31(0.02)</td>
</tr>
</tbody>
</table>