Electronic Supplementary Information

Flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays

Wan-Sun Kim,§,a,b Gi-Ja Lee§,a,b Je-Hwang Ryu,a Kyu-Chang Park,c,* and Hun-Kuk Parka,b*

a Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
b Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Korea
c Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701, Korea
§ These authors contributed equally to this paper

* To whom correspondence should be addressed. E-mail: sigmoidus@khu.ac.kr, kyupark@khu.ac.kr
Fig. S1 Cyclic voltammograms of Ni/VCNTs/G electrode in 5.0 mM K₃[Fe(CN)₆] containing 1.0 M KCl in 1.0 M phosphate buffered saline at different scan rates (10 – 200 mV·s⁻¹). Insets are the plots of peak current vs. scan rate¹⁄². The electrochemical active surface area of the Ni/VCNTs/G was calculated by Randles–Sevcik equation:

\[
I_p = 2.69 \times 10^5 AD^{1/2} n^{3/2} \gamma^{1/2} C
\]

- **Iₚ**: the peak current (A)
- **A**: the electrochemically effective surface area of the working electrode (cm²)
- **D**: the diffusion coefficient (7.64 × 10⁻⁶ cm²·s⁻¹ for K₃[Fe(CN)₆] at 25 °C)
- **n**: the number of electrons involved in the reaction
- **γ**: the scan rate (V·s⁻¹)
- **C**: the concentration of the reactant (mol·cm⁻³)
Table S1. The detection of glucose in human serum samples. (from three separate experiments)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (mM)</th>
<th>RSD (%)</th>
<th>Added (mM)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.959</td>
<td>1.50</td>
<td>0.1</td>
<td>98.3</td>
</tr>
<tr>
<td>2</td>
<td>2.329</td>
<td>3.28</td>
<td>0.1</td>
<td>99.9</td>
</tr>
<tr>
<td>3</td>
<td>3.622</td>
<td>3.34</td>
<td>0.1</td>
<td>101.2</td>
</tr>
</tbody>
</table>