Transition metal-catalyzed redox isomerization of codeine and morphine in water

Antonio Bermejo Gómez,[a,b] Pär Holmberg,[c] Jan-E. Bäckvall,[a,b] and Belén Martín-Matute*[a,b]

[a] Dr A. Bermejo Gómez, Prof. Jan-E. Bäckvall and Prof. B. Martín-Matute
Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University,
SE-106 91 Stockholm, Sweden.
Fax: (+) 46815 49 08
E-mail: belen@organ.su.se

[b] Dr A. Bermejo Gómez, Prof. Jan-E. Bäckvall and Prof. B. Martín-Matute
Berzelii Center EXSELENT on Porous Materials
Stockholm University,
SE-106 91 Stockholm, Sweden.

[c] Dr Pär Holmberg
Cambrex Karlskoga AB,
SE-691 85 Karlskoga, Sweden.
Fax: (+) 46596 78 3129
E-mail: par.holmberg@cambrex.com
Table of Contents for Supporting Information

S3 General information
S4 Synthesis and characterization of hydrocodone (3)
S5 Synthesis and characterization of hydromorphone (4)
S6 Synthesis of hydrocodone (3) in 100 g scale
S7 1H NMR spectrum of hydrocodone (3)
S8 13C NMR spectrum of hydrocodone (3)
S9 1H NMR spectrum of hydromorphone (4)
S10 13C NMR spectrum of hydromorphone (4)
S11 1H NMR spectrum of hydrocodone (3) from 100 g scale experiment
S12 UPLC chromatograms of hydrocodone (3) from 100 g scale experiments
General Information:

All transition metal-catalyzed reactions were carried out in sealed glass-vials under an atmosphere of nitrogen. Reagents were used as obtained from commercial suppliers without further purification.

Reactions in 100 g scale were carried out in a 1 L jacketed cylindrical reactor, diameter 100 mm; Manufacturer: G. Diehm (accessories: turbine stirrer, 70 mm diameter; immersed temperature pocket / baffle, 10 mm diameter).

1H NMR spectra were recorded at 400 MHz; 13C NMR spectra were recorded at 100 MHz on a Bruker Advance spectrometer. 1H and 13C NMR chemical shifts (δ) are reported in ppm from tetramethylsilane using the residual solvent resonance (CHCl$_3$: δ$_H$ 7.26 and CDCl$_3$: δ$_C$ 77.2; or DMSO: δ$_H$ 2.50 and DMSO-δ$_6$: δ$_C$ 39.5). Coupling constants (J) are given in Hz.

Codeine (1) and morphine (2) were used as obtained from suppliers (Codeine base and Morphine CPS from Alcaliber S.A.) without further purification. [Rh(COD)(CH$_3$CN)$_2$]BF$_4$ (5) and 1,3,5-triaza-7-phosphaadamantane (L1, PTA, 97%) were purchased from Sigma-Aldrich and used without further purification. Deionized H$_2$O was degassed by bubbling N$_2$ for 30 min before it was used.

UPLC chromatograms were recorded on a Waters UPLC equipment with a gradient pump and a MS detector (TQD), column Waters Acquity BEH C18 (1.7 µm, 2.1 x 50 mm) using a solution 10 mM of ammonium formate in H$_2$O as mobile phase A and MeOH as mobile phase B (flow rate of 0.4 mL/ min and at 30 °C). The rate of the mobile phases was changed from 90% A : 10% B (0 min) to 10% A : 90% B (10 min).
Synthesis and characterization of hydrocodone (3):

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (5.4 mg, 0.033 mmol) and [RhCOD(CH$_3$CN)$_2$]BF$_4$ (5) (6.4 mg, 0.017 mmol) were stirred in deionized and degassed H$_2$O (10 mL) for some minutes prior to use until a clear solution was obtained.

Codeine base (1) (1.0 g, 3.34 mmol) was suspended in deionized and degassed H$_2$O (5 mL) and the suspension was heated to 100 °C. The catalyst solution (1.7 mM, 2 mL, 0.1 mol% Rh) was added and the reaction mixture was stirred vigorously at this temperature for 24 h. After cooling, the solid was filtered off and washed with H$_2$O (3 x 5 mL). The product 3 was dried under vacuum (< 2 mmHg) and obtained as an off-white solid (889 mg, 89%).

1H NMR (400 MHz, CDCl$_3$, TMS): $\delta = 6.70$ (d, J(H,H) = 8.2 Hz, 1H), 6.63 (d, J(H,H) = 8.2 Hz, 1H), 4.65 (s, 1H), 3.91 (s, 3H), 3.18 (dd, J(H,H) = 5.4, 2.8 Hz, 1H), 3.02 (d, J(H,H) = 18.5 Hz, 1H), 2.62 – 2.51 (m, 2H), 2.43 (s, 3H), 2.42 – 2.26 (m, 3H), 2.19 (td, J(H,H) = 12.1, 3.5 Hz, 1H), 2.06 (td, J(H,H) = 12.1, 4.8 Hz, 1H), 1.89 – 1.77 (m, 2H), 1.26 (qd, J(H,H) = 13.2, 3.8 Hz, 1H).

13C NMR (100 MHz, CDCl$_3$, TMS): $\delta = 208.0$, 145.6, 143.0, 127.4, 126.5, 119.9, 114.8, 91.6, 59.4, 57.0, 47.1, 47.0, 43.1, 42.9, 40.4, 35.7, 25.7, 20.1.
Synthesis and characterization of hydromorphone (4):

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (7.9 mg, 0.049 mmol) and [Rh(COD)(CH3CN)2]BF4 (5) (9.3 mg, 0.025 mmol) were stirred in deionized and degassed H2O (7 mL) for some minutes prior to use until a clear solution was obtained.

The catalyst solution (2.5 mM, 7 mL, 0.7 mol% Rh) was added to morphine CPS (2) (1.0 g, 3.50 mmol) and the suspension was heated to 100 °C and stirred vigorously at this temperature for 24 h. After cooling to room temperature, the solid was filtered off and washed with H2O (3x5 mL). The product 4 was dried under vacuum (< 2 mmHg) and was obtained as white-grey solid (718 mg, 77%).

1H NMR (400 MHz, DMSO-d6, TMS): δ = 9.10 (s, 1H), 6.54 (d, J(H,H) = 8.0 Hz, 1H), 6.50 (d, J(H,H) = 8.1 Hz, 1H), 4.80 (s, 1H), 3.06 (dd, J(H,H) = 5.0, 2.7 Hz, 1H), 2.87 (d, J(H,H) = 18.3 Hz, 1H), 2.56 – 2.39 (m, 3H), 2.29 (s, 3H), 2.23 – 2.12 (m, 2H), 2.05 – 1.96 (m, 2H), 1.80 – 1.74 (m, 1H), 1.52 – 1.44 (m, 1H), 1.05 – 0.95 (m, 1H).

13C NMR (100 MHz, DMSO-d6, TMS): δ = 208.7, 144.0, 139.3, 127.4, 124.5, 119.2, 117.0, 90.4, 58.3, 46.4, 46.2, 42.5, 41.4, 39.7, 34.8, 25.0, 19.6.
Synthesis hydrocodone (3) in 100 g scale:

Preparation of the catalyst: 1,3,5-Triaza-7-phosphaadamantane (L1) (108 mg, 0.66 mmol) and [RhCOD(CH3CN)2]BF4 (5) (128 mg, 0.34 mmol) were dissolved in deionized and degassed H2O (20 mL) for some minutes prior to use until a clear solution was obtained.

Codeine (1) (100 g, 334 mmol) was suspended in deionized and degassed H2O (500 mL) in a 1 L jacketed cylindrical reactor, and the suspension was heated at 100 °C. The catalyst solution (20 mL, 0.1 mol% Rh) was added and the reaction was stirred vigorously at this temperature for 24 h. After cooling, the solid was filtered off and washed with H2O (3 x 100 mL). The solid was dried under vacuum (< 2 mmHg) to afford the title compound as off-white solid (90 g, 90%).
Hydrocodone (3)

1H NMR (400 MHz, CDCl$_3$)
Hydrocodone (3)

13C NMR (400 MHz, CDCl$_3$)
Hydromorphone (4)

^{1}H NMR (400 MHz, DMSO-d_6)
Hydromorphone (4)

13C NMR (400 MHz, DMSO-d_6)
Hydrocodone (3) (100 g scale)

1H NMR (400 MHz, DMSO-d_6)
UPLC chromatogram of hydrocodone (3) (100 g scale, 0.1 mol% Rh)

<table>
<thead>
<tr>
<th>Name</th>
<th>RT (min)</th>
<th>Area (µm²sec)</th>
<th>Height (µl)</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Octalone</td>
<td>21.472</td>
<td>31056.006</td>
<td>30005.92</td>
<td>2.4401</td>
</tr>
<tr>
<td>2 Codeine</td>
<td>20.853</td>
<td>144017.663</td>
<td>43059.164</td>
<td>5.5187</td>
</tr>
<tr>
<td>3 Hydrocodone</td>
<td>23.423</td>
<td>1190522.805</td>
<td>100368.844</td>
<td>83.9154</td>
</tr>
<tr>
<td>4</td>
<td>24.788</td>
<td>144969.9709</td>
<td>1333.01</td>
<td>0.1158</td>
</tr>
</tbody>
</table>

UPLC chromatogram of hydrocodone (3) (100 g scale, 0.15 mol% Rh)

<table>
<thead>
<tr>
<th>Name</th>
<th>RT (min)</th>
<th>Area (µm²sec)</th>
<th>Height (µl)</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Octalone</td>
<td>19.422</td>
<td>10760.304</td>
<td>1864.48</td>
<td>0.0901</td>
</tr>
<tr>
<td>2 Codeine</td>
<td>21.644</td>
<td>141223.0413</td>
<td>6810.79</td>
<td>0.3020</td>
</tr>
<tr>
<td>3 Hydrocodone</td>
<td>22.899</td>
<td>-7630.756</td>
<td>0.1969</td>
<td>0.0058</td>
</tr>
<tr>
<td>4</td>
<td>23.375</td>
<td>-423279.1869</td>
<td>125648.28</td>
<td>98.3612</td>
</tr>
</tbody>
</table>