Supporting Information for

Synergism and Formation of Vesicle Gels in Salt-Free Catanionic Hydrocarbon/Fluorocarbon Surfactant Mixtures

Fig. S1. Variation of storage modulus (G'), viscous modulus (G'') and complex viscosity ($|\eta^*|$) as a function of angular frequency for vesicle gels formed in $C_{14}DMAO/TFOPA$ system. $c_{C14DMAO} = 300$ mmol·L$^{-1}$, $X_{TFOPA} = 0.285$ (a), 0.333 (b), 0.362 (c), 0.388 (d) and 0.412 (e), respectively.
Fig. S2. Variation of storage modulus (G’), viscous modulus (G'”) and complex viscosity (|η*|) as a function of angular frequency for vesicle gels formed in C_{14}DMAO/HFDPA system. c_{C14DMAO} = 300 mmol·L$^{-1}$, X_{HFDPA} = 0.268 (a), 0.318 (b), 0.348 (c), 0.375 (d), 0.400 (e) and 0.434 (f) respectively.
Fig. S3. Variation of storage modulus (G'), viscous modulus (G'') and complex viscosity ($|\eta^*|$) as a function of angular frequency of 150 mmol·L$^{-1}$ HFDPA mixed with 250 (a), 300 (b), 350 (c) and 400 (d) mmol·L$^{-1}$ C$_{14}$DMAO.
Fig. S4. Variation of the complex viscosity as a function of angular frequency for the samples with XHFDPA = 0.325 and increasing $c_{C_{14}DMAO}$ as shown inset.
Fig. S5. Variation of storage modulus (G'), viscous modulus (G'') and complex viscosity ($|\eta^*|$) as a function of angular frequency for a gel phase formed in C$_{14}$DMAO/HFDPA system with $c_{C14DMAO} = 300$ mmol·L$^{-1}$ and $X_{HFDPA} = 0.318$ at different temperatures.
Fig. S6. IR spectra of solid C\textsubscript{14}DMAO (a), 300 mmol·L-1 C\textsubscript{14}DMAO aqueous solution (b), solid TFOPA (c) and different phases from C\textsubscript{14}DMAO/TFOPA mixtures: $X_{\text{TFOPA}} = 0.143$ (d, L\textsubscript{1} phase); $X_{\text{TFOPA}} = 0.200$ (e, fluid L\textsubscript{\alpha} phase); $X_{\text{TFOPA}} = 0.221$ (f, gel phase) and $X_{\text{TFOPA}} = 0.286$ (g, gel phase).

Fig. S7. The magnified plots of the DSC traces in the range of 50-80°C. For the meaning of each curve, see the figure caption of Fig. 15 in the maintext.
Table S1. Variation of the molar fraction of TFOPA (or HFDPA) in the mixed aggregates (X_i^m) and the interaction parameter between TFOPA (or HFDPA) and C_{14}DMAO (β_α) at various X_{TFOPA} (of X_{HFDPA}).

<table>
<thead>
<tr>
<th>$X_{TFOPA} (\alpha_i)$</th>
<th>X_i^m</th>
<th>β_α</th>
<th>$X_{HFDPA} (\alpha_i)$</th>
<th>X_i^m</th>
<th>β_α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091</td>
<td>0.369</td>
<td>-7.977</td>
<td>0.091</td>
<td>0.501</td>
<td>-9.487</td>
</tr>
<tr>
<td>0.155</td>
<td>0.405</td>
<td>-8.596</td>
<td>0.167</td>
<td>0.533</td>
<td>-8.721</td>
</tr>
<tr>
<td>0.241</td>
<td>0.436</td>
<td>-9.518</td>
<td>0.231</td>
<td>0.555</td>
<td>-8.246</td>
</tr>
<tr>
<td>0.286</td>
<td>0.455</td>
<td>-11.796</td>
<td>0.286</td>
<td>0.561</td>
<td>-9.486</td>
</tr>
</tbody>
</table>