A New 12L-Hexagonal Perovskite Cs$_4$Mg$_3$CaF$_{12}$: Structural Transition Derived from the Partial Substitution of Mg$^{2+}$ with Ca$^{2+}$

Zheng Wang,ab Qun Jing,ab Min Zhang,*a Xiaoyu Dong,ab Shilie Pan,*a Zhihua Yanga

aKey Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China

bUniversity of Chinese Academy of Sciences, Beijing 100049, China

* To whom correspondence should be addressed. E-mail: zhangmin@ms.xjb.ac.cn (M. Zhang); E-mail: slpan@ms.xjb.ac.cn (S. Pan)
Table S1 Atomic coordinates, equivalent isotropic displacement parameters (Å2) and bond valence sum (BVS) for CMCF. $U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Site</th>
<th>S.O.F</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$U(eq)$</th>
<th>BVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs(1)</td>
<td>4e</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1315(1)</td>
<td>16(1)</td>
<td>1.14</td>
</tr>
<tr>
<td>Cs(2)</td>
<td>4e</td>
<td>1</td>
<td>6667</td>
<td>3333</td>
<td>503(1)</td>
<td>14(1)</td>
<td>1.31</td>
</tr>
<tr>
<td>Mg(1)</td>
<td>2h</td>
<td>1</td>
<td>3333</td>
<td>6667</td>
<td>1667</td>
<td>11(1)</td>
<td>2.46</td>
</tr>
<tr>
<td>Mg(2)</td>
<td>2h</td>
<td>1</td>
<td>3333</td>
<td>6667</td>
<td>751(1)</td>
<td>10(1)</td>
<td>2.20</td>
</tr>
<tr>
<td>Ca(1)</td>
<td>4e</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11(1)</td>
<td>1.94</td>
</tr>
<tr>
<td>F(1)</td>
<td>4e</td>
<td>1</td>
<td>1752(2)</td>
<td>3505(3)</td>
<td>416(1)</td>
<td>17(1)</td>
<td>1.10</td>
</tr>
<tr>
<td>F(2)</td>
<td>4e</td>
<td>1</td>
<td>570(3)</td>
<td>5285(2)</td>
<td>1231(1)</td>
<td>15(1)</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Table S2 Selected bond lengths (Å) for CMCF^a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Symmetry Equivalent</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(1)-F(2)</td>
<td>1.9747(16)</td>
<td>Cs(1)-F(2)#3</td>
<td>3.1349(5)</td>
</tr>
<tr>
<td>Mg(1)-F(2)#15</td>
<td>1.9747(16)</td>
<td>Cs(1)-F(2)#4</td>
<td>3.1349(5)</td>
</tr>
<tr>
<td>Mg(1)-F(2)#3</td>
<td>1.9747(16)</td>
<td>Cs(1)-F(2)#5</td>
<td>3.1349(5)</td>
</tr>
<tr>
<td>Mg(1)-F(2)#16</td>
<td>1.9747(16)</td>
<td>Cs(1)-F(2)#6</td>
<td>3.1503(17)</td>
</tr>
<tr>
<td>Mg(1)-F(2)#7</td>
<td>1.9747(16)</td>
<td>Cs(1)-F(2)#7</td>
<td>3.1503(17)</td>
</tr>
<tr>
<td>Mg(1)-F(2)#17</td>
<td>1.9748(16)</td>
<td>Cs(1)-F(2)#8</td>
<td>3.1503(17)</td>
</tr>
<tr>
<td>Mean</td>
<td>1.9747</td>
<td>Cs(1)-F(1)#1</td>
<td>3.2783(18)</td>
</tr>
<tr>
<td>Mg(2)-F(1)#15</td>
<td>1.9737(18)</td>
<td>Cs(1)-F(1)#2</td>
<td>3.2783(18)</td>
</tr>
<tr>
<td>Mg(2)-F(1)</td>
<td>1.9737(18)</td>
<td>Cs(1)-F(1)</td>
<td>3.2783(18)</td>
</tr>
<tr>
<td>Mg(2)-F(1)#3</td>
<td>1.9737(18)</td>
<td>Mean</td>
<td>3.1742</td>
</tr>
<tr>
<td>Mg(2)-F(2)#15</td>
<td>2.066(2)</td>
<td>Cs(2)-F(2)#9</td>
<td>3.0229(16)</td>
</tr>
<tr>
<td>Mg(2)-F(2)</td>
<td>2.066(2)</td>
<td>Cs(2)-F(2)#2</td>
<td>3.0229(16)</td>
</tr>
<tr>
<td>Mg(2)-F(2)#3</td>
<td>2.066(2)</td>
<td>Cs(2)-F(2)#3</td>
<td>3.0229(16)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.0199</td>
<td>Cs(2)-F(1)#10</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)#22</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)#9</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)#2</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)#23</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)#11</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)#2</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)#13</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)#3</td>
<td>3.1219(5)</td>
</tr>
<tr>
<td>Ca(1)-F(1)#1</td>
<td>2.2589(16)</td>
<td>Cs(2)-F(1)#12</td>
<td>3.2256(18)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.2589</td>
<td>Cs(2)-F(1)#13</td>
<td>3.2256(18)</td>
</tr>
<tr>
<td>Cs(1)-F(1)#1</td>
<td>3.1349(5)</td>
<td>Cs(2)-F(1)#14</td>
<td>3.2256(18)</td>
</tr>
<tr>
<td>Cs(1)-F(2)</td>
<td>3.1349(5)</td>
<td>Mean</td>
<td>3.1230</td>
</tr>
<tr>
<td>Cs(1)-F(2)#2</td>
<td>3.1349(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Note. Symmetry transformations used to generate equivalent atoms:

1. -y,x,-y,z
2. -x+y,-x,z
3. -y+1,x,-y+1,z
4. -x+y-1,-x,z
5. x,y-1,z
6. y-1/3,-x+y-2/3,-z+1/3
7. x-y+2/3,x+1/3,-z+1/3
8. -x-1/3,-y+1/3,-z+1/3
9. x+1,y,z
10. -y+1,x,-y,z
11. -x+y+1,-x+1,z
12. x+y+1,x,-z
13. y,x+y,-z
14. -x+1,-y+1,-z
15. -x+y,-x+1,z
16. -x+2/3,-y+4/3,-z+1/3
17. y-1/3,-x+y+1/3,-z+1/3
18. -x+2/3,-y+1/3,-z+1/3
19. x,y+1,z
20. x+1,y+1,z
21. x-1,y,z
22. -x,-y,-z
23. x-y,x,-z
24. -x+1,-y,-z
25. x-1,y-1,z
Figure S1. Structure of cubic CsMF$_3$ (M = Mg and Ca).
Figure S2. Crystal structure of CMCF.
Figure S3. The bond angles of [CaF$_6$] octahedra.
Figure S4. The typical perovskite model.
Figure S5. Infrared spectrum of CMCF.
Figure S6. Band structure of CMCF.
Figure S7. The map of charge density of CMCF.