Supplementary information for

Interpenetrating network of V₂O₅ nanosheets/carbon nanotubes nanocomposite for fast lithium storage

Zhaolong Li, Quanyao Zhu, Shengnan Huang, Shanshan Jiang, Shan Lu, Wen Chen and Galina S. Zakharova

a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
b Institute of Solid State Chemistry, Ural Branch of Russian Academy of Science, Ekaterinburg 620990, Russian Federation

*Email: chenw@whut.edu.cn

This author contributed equally to this study and share first authorship. All authors discussed the results and commented on the manuscript. The authors declare no competing financial interest.
Fig. S1 XRD pattern of the V$_2$O$_5$ nanosheets/CNTs nanocomposite (with 20 wt.% CNTs) before heating treatment.

Fig. S2 XRD pattern of the V$_2$O$_5$ nanosheets/CNTs nanocomposite with different ratio of CNTs.
Fig. S3 FESEM images of the V$_2$O$_5$ nanosheets/CNTs nanocomposites with different ratio of CNTs.

Fig. S4 TEM images of the V$_2$O$_5$ nanosheets/CNTs nanocomposites with the ratio of 0 and 20 wt.% CNTs, respectively.
Fig. S5 Comparison the specific discharge capacity vs. cycle number of the V$_2$O$_5$ nanosheets/CNTs nanocomposites with different CNTs ratio at the current density of 0.1, 0.5, and 1 Ag$^{-1}$.