Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties

Yongwon Chung,†a Sanggeun Lee,†a Chandreswar Mahata,a Jungmok Seo,a Seung-Min Lim,b Min-su Jeong,c Hanearl Jung,d Young-Chang Joo,b Young-Bae Park,c Hyungjun Kim,d and Taeyoon Lee*a

aNanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea. E-mail: taeyoon.lee@yonsei.ac.kr

bNanodevice Materials Laboratory, Department of Materials Science & Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea

cSchool of Materials Science and Engineering, Andong National University, 1375 Gyeongdong-ro, Andong-si, Gyeongsangbuk-do 760-749, Republic of Korea

dNanodevice Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

† These authors contributed equally as first authors.

* Corresponding author:

Tel: +82-2-2123-5767

Fax: +82-2-313-2879

e-mail address: taeyoon.lee@yonsei.ac.kr
Fig. S1 AFM images of the substrates coated with (a) APTMS and (b) C-SAM and their (c) cross-sectional image obtained from a larger scale.
Fig. S2 (a) Representative leakage current versus electric field results of the fabricated MOS capacitors using no diffusion barrier, APTMS, and C-SAM. (b) TDDB test results without diffusion barrier while using Al gate at 225 °C and 2 MV/cm.