Supporting Information

Rapid low-temperature synthesis of mesoporous nanophase ZnFe$_2$O$_4$ with enhanced lithium storage properties for lithium-ion batteries

By Lin Lian, a Linrui Hou, a Lu Zhou, a Lishi Wang, b and Changzhou Yuan *b*

a School of Materials Science & Engineering, Anhui University of Technology, Ma’anshan, 243002, P.R. China

Email: hour629@163.com; ayuancz@163.com

b Tianjin EV Energies Co., Ltd., Tianjin, 300380, P.R. China
Fig. S1. XRD patterns of the as-synthesized samples at pH = 9.5 and various temperatures for different time. (a) 25 °C for 5 h; (b) 100 °C for 1 h; (c) 100 °C for 2 h; (d) 100 °C for 3 h and (e) 100 °C for 4 h
Fig. S2. FESEM image of the as-synthesized nanophase ZnFe$_2$O$_4$
Fig. S3. Cycle performance of the as-synthesized nanophase ZnFe$_2$O$_4$ at a current density of 65 mA g$^{-1}$.
Fig. S4. Cycle behavior of the as-synthesized nanophase ZnFe$_2$O$_4$ at a large current density of 2000 mA g$^{-1}$