Morphology and wettability control of honeycomb porous films of amphiphilic fluorinated pentablock copolymers via breath figure method

Zhiguang Li,a,b Xiaoyan Ma,*a,b Duyang Zang,*a Beirong Shang,a,b Xiu Qiang,a,b Qing Hong,a,b and Xinghua Guan,a,b

a Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Shaanxi province, School of Science, Northwestern Polytechnical University, Xi’an 710129, China. Tel: +86-29-88431676 E-mail: m_xiao_yana@nwpu.edu.cn ;
b Key Laboratory of Polymer Science and Technology, Shaanxi province, School of Science, Northwestern Polytechnical University, Xi’an, 710129, China. Tel: +86-29-88431618 E-mail: dyzang@nwpu.edu.cn

Materials

Poly (ethylene glycol) (PEG$_{2000}$) and Trifluoroethyl methacrylate (TFEMA) were purchased from Aldrich, Methyl methacrylate (MMA), Triethylamine (TEA) and CuCl were purified according to the method reported in preceding studies.1 The chemical reagents, 2-bromopropiomyl bromide(2-BPB), $N,N,N′,N′,N″$-pentamethyldiethylenetriamine (PMDETA), 4-dimethylamiopryidine (DMAP), were used as received without purification. Solvents were dried by standard process.

Polymerization Process

Figure S1. The process for synthesis of Br-PEG-Br.

Figure S2. The process for synthesis of PTFEMA-b-PMMA-b-PEG-b-PMMA-b-PTFEMA pentablock copolymer.
Results

Figure S3. The FTIR spectra of the PEG, Br-PEG-Br and the pentablock copolymer.

Figure S4. Spectra of the pentablock copolymers measured in CHCl$_3$. (a) 1H NMR, (b) 13C NMR

Reference