Supporting Information

Self-stabilized Pt-Rh bimetallic nanoclusters as durable electrocatalyst for dioxygen reduction in PEM fuel cells

B. Narayanamoorthya, K.K.R. Dattac, M. Eswaramoorthyb and S. Balajia,*

aDepartment of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSV University), Enathur, Kanchipuram - 631 561, India.

bNanomaterials and Catalysis Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore – 560 064, India.

cRegional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic.

* To whom correspondence should be addressed. Tel.: +91-44-27264293; fax: +91-44-27264285.

E-mail address: prof.balaji13@gmail.com (S. Balaji).
Figure S1. FESEM images of supportless nanoclusters of SL Pt$_3$Rh NC (a & b) and VC supported Pt$_3$Rh NC (c & d).
Figure S2. (a) EDX pattern, (b) SEM and elemental mappings of (c) Pt, (d) Rh for supportless Pt$_3$Rh nanoclusters.
Figure S3. Comparison of (a) cyclic voltammograms in N₂ and (b) linear scan voltammograms in O₂ saturated 0.5 M H₂SO₄ for SL Pt-Rh nanoclusters with different atomic wt. % compositions at 25 °C.
Figure S4. Comparison of (a) mass transfer corrected Tafel plots and (b) K-L plots of SL Pt-Rh nanoclusters with different atomic wt. % compositions in O\textsubscript{2} saturated 0.5 M H\textsubscript{2}SO\textsubscript{4} at a scan rate of 0.01 V s-1 at 25 °C.
Figure S5. Mass transfer corrected Tafel plots of supportless Pt₃Rh and Pt₃Rh/VC nanoclusters in O₂ saturated 0.5 M H₂SO₄ at 2400 rpm at a scan rate of 0.01 V s⁻¹ at 25 °C.
Figure S6. ADT (a) CVs and (b) LSVs of Pt₃Rh/VC nanoclusters and (c) comparison of normalized ECSA for both supportless and VC supported Pt₃Rh nanoclusters during potential cycling.
Figure S7. (a) TEM image, (b) EDX pattern, (c) CV in N₂ and (d) LSVs at different rotation rates in O₂ saturated 0.5 M H₂SO₄ for SL Pt@Pt₃Rh nanoclusters at 25 °C.
Figure S8. Comparison of LSVs for supportless Pt@Pt$_3$Rh and Pt$_3$Rh nanoclusters at rotation rate of 2400 rpm in O$_2$ saturated 0.5 M H$_2$SO$_4$ nanoclusters at 25 °C.
Table S1. Comparison of ORR kinetic parameters for supportless Pt-Rh nanoclusters with different atomic weight percentage composition.

<table>
<thead>
<tr>
<th>Pt-Rh (atomic wt. % composition)</th>
<th>j_d (mA cm$^{-2}$)</th>
<th>Onset Potential (V)</th>
<th>b (mV dec$^{-1}$)</th>
<th>$E_{1/2}$ (V)</th>
<th>$10^6 \times i_0$ (A cm$^{-2}$)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:1</td>
<td>3.92</td>
<td>0.73</td>
<td>132</td>
<td>0.61</td>
<td>1.30</td>
<td>4.0</td>
</tr>
<tr>
<td>1:1</td>
<td>2.96</td>
<td>0.68</td>
<td>143</td>
<td>0.57</td>
<td>0.57</td>
<td>2.65</td>
</tr>
<tr>
<td>1:3</td>
<td>2.78</td>
<td>0.59</td>
<td>159</td>
<td>0.45</td>
<td>0.35</td>
<td>2.61</td>
</tr>
</tbody>
</table>

j_d-limiting current density; $E_{1/2}$-half-wave potential; b-Tafel slope; α-electron transfer coefficient; i_0-exchange current density; n-number of electron transfer.