Supporting information

Nanorod-like α-Bi$_2$O$_3$ nanoparticles: a highly active photocatalyst synthesized by using g-C$_3$N$_4$ as a template

Hai-Ying Jianga,b, Guigao Liua, Peng Lia, Dong Haoa, Xianguang Menga, Tao Wanga, Jun Linb,*, Jinhua Yea,*

a Research Unit for Environmental Remediation Materials, National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan

b Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China

To whom correspondence should be addressed. E-mail: Jinhua.YE@nims.go.jp
Sample Characterization:

The microstructures of the samples were observed by field emission microscope (FESEM, JEOL 6701F). Transmission electron microscopy images were recorded with a field emission transmission electron microscope (2100F, JEOL Co., Japan). A surface-area analyzer (BEL Sorp-mini II, BEL Japan Co., Japan) was used to measure the surface areas of samples through nitrogen adsorption and desorption isotherms at 77K. The crystal structures of the samples were determined with an X-ray diffractometer (X’pert Powder, PANalytical B. V., Netherlands) with Cu-Kα radiation. Fourier transform infrared (FT-IR) spectra were obtained with an IRPrestige-21 FTIR (Shimadzu) spectrophotometer. The optical properties of the samples were measured by UV-vis diffuse reflectance spectroscopy method by using UV-2600 (Shimadzu Co., Japan) spectrophotometer equipped, with BaSO4 as the reflectance standard, and the optical absorptions were converted from the reflection spectra according to Kubelka-Munk equation. Thermogravimetric-differential thermal analysis (TG-DTA; Shimadzu, DTG-60H, Japan) was used to study the formation mechanism of the nanorod-like α-Bi2O3.

Photocatalytic activity measurements:

The photocatalytic oxidations of gaseous IPA were carried out under the visible light with the wavelengths of 420 nm ≤ λ ≤ 800 nm. The light source was a 300 W Xe-arc lamp (10A imported current, focused through a 50×50mm shutter window) equipped with some wavelength cutoff filters and a water filter. Typically, 100 mg photocatalyst was bespread uniformly on a glass dish with an area of 9 cm². A certain amount (~1400 ppm) of gaseous IPA was injected into the vessel and kept for 2 h in the dark before irradiation. During the irradiation by visible light, 0.5 ml of the gas was sampled everyone 1 h intervals. The products were analyzed with a gas chromatograph (GC-2014, Shimadzu, Japan) with a flame ionization detector (FID).
Figure S1 The FT-IR spectra of all the α-Bi₂O₃ samples induced by g-C₃N₄ with 6 hours' calcinations
Figure S 2 The UV-vis DRS spectra of all the α-Bi$_2$O$_3$ samples induced by g-C$_3$N$_4$ with 6 hours’ calcinations
Figure S3 Photocatalytic oxidations of gaseous IPA over S7-6h with and without visible light irradiation.
Figure S 4 The SEM spectra of the α-Bi$_2$O$_3$ by using the (NH$_4$)$_2$CO$_3$ [inorganics (A)] and citric acid [organics (B)] as the template to treat the microrod-like α-Bi$_2$O$_3$.