Supporting Information

Copper-Catalyzed Carbonylative Suzuki Coupling of Aryl iodides with Arylboronic Acids under Ambient Pressure of Carbon Monoxide

Laijin Cheng, Yanzhen Zhong, Zhuchao Ni, Hongyan Du, Fengli Jin, Qi Rong, and Wei Han*

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023 Nanjing (China)

E-mail: whhanwei@gmail.com

List of Contents

1. General Information --- S2
2. General Procedures for Nanocopper-Catalyzed Carbonylative Suzuki Reactions-- S2
3. Analytical Data of Products------------------------------------- S3
4. Hg(0) Poisoning Test -- S7
5. References --- S8
6. NMR Spectra for Products -------------------------------------- S9
1. General Information

Reagent Information. All the aryl halides and the arylboronic acids were purchased from Alfa Aesar and Accela ChemBio Co., Ltd. and were used as received. PEG-400 (bought from Acros) was pre-dried (toluene azeotrope) and pre-deoxygenated. The following nanocopper, bases, and tBuCOOH were used: nanocopper (99.9%, aladdin; 10-30 nm), K$_3$PO$_4$ (99%, Alfa Aesar), KF (99%, Accela), and tBuCOOH (99%, Alfa Aesar).

Analytical methods. 1H and 13C NMR spectra of solutions in CDCl$_3$ were recorded on a Bruker Avance 400 instrument. Chemical shifts were expressed in parts per million (ppm) downfield from tetramethylsilane and refer to the solvent signals (CDCl$_3$: H 7.24 and C 77.0 ppm). The signals of water were observed at about 1.58 ppm in CDCl$_3$, respectively. Abbreviations for signal couplings are: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets; dt, triplet of doublets; td, doublet of triplets; tt, triplet of triplets; ddd, doublet of doublet of doublets; tdd, doublet of doublet of triplets. Coupling constants, J, were reported in hertz unit (Hz). Infrared spectra of neat substances were recorded on a Thermo Nicolet Corporation GC-FTIR NEXUS670 spectrometer. HRMS was performed on a Bruker's solarix 94 (ESI-FTICR-MS) mass spectrometer.

2. General Procedures for Copper-Catalyzed Carbonylative Suzuki Reactions

General Procedure A: A 25 mL Schlenk flask was charged with arylboronic acid (0.75mmol), nanocopper (0.1 mmol, 6.4 mg), K$_3$PO$_4$ (1.0 mmol, 218.8 mg), tBuCOOH (0.25 mmol, 25.8 mg), and PEG-400 (2.0 mL) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Corresponding aryl iodide (0.5 mmol) was added successively. The mixture was stirred at 80 °C for the indicated time. At the end of the reaction, the reaction mixture was poured into a saturated aqueous NaCl
solution (15 mL) and extracted with ethyl acetate (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether: diethyl ether = 25 : 1).

In the recycling experiment, the reaction mixture was extracted with ethyl acetate (2 × 15 mL), and the residue was subjected to a second run by charging it with the same substrates as mentioned above without further addition of Pd(OAc)$_2$ and PEG 400 under 1 atm of carbon monoxide. In the third, sixth, and eighth runs, another 0.5 mL of PEG-400 was added to the reaction mixture.

General Procedure B: A 25 mL Schlenk flask was charged with arylboronic acid (0.75 mmol), nanocopper (0.1 mmol, 6.4 mg), K$_3$PO$_4$ (0.5 mmol, 109.4 mg), KF (0.25 mmol, 14.7 mg), tBuCOOH (0.25 mmol, 25.8 mg), and PEG-400 (2.0 mL) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Corresponding aryl iodide (0.5 mmol) was added successively. The mixture was stirred at 100 °C for the indicated time. At the end of the reaction, the reaction mixture was poured into a saturated aqueous NaCl solution (15 mL) and extracted with ethyl acetate (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether: diethyl ether = 25 : 1).

3. Analytical Data of Products

The products, 3aa-3fa, 3ha-3na, 3pa-3qa, 3ab-3ae, 3ii-3ij, 3ie, 3ki-3kj, 3ke, and 3kh were identified by comparison of their spectral data with those of our previous reports.[S1-S2]
4-Benzoylbenzonitrile (3ga): Following general procedure B, 3ga was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[S3] 1H NMR (400 MHz, CDCl$_3$): δ 7.85 (d, $J=8.0$ Hz, 2 H), 7.77 (d, $J=8.0$ Hz, 2 H), 7.76-7.75 (m, 2 H), 7.62 (tt, $J=8.0$, 1.2 Hz, 1 H), 7.51-7.47 ppm (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 195.0, 141.2, 136.3, 133.3, 132.1, 130.2, 130.0, 128.6, 117.9, 115.6, 116.6 ppm.

(3,5-Dimethylisoxazol-4-yl)(phenyl)methane (3oa): Following general procedure B, 3oa was isolated as a colorless liquid. Known compound; the NMR spectroscopic data agree with those described in ref.[S4] 1H NMR (400 MHz, CDCl$_3$): δ7.70–7.68 (m, 2 H), 7.59 (tt, $J=8.0$, 1.2 Hz, 1H), 7.50–7.46 (m, 2 H), 2.31 (s, 3 H), 2.28 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 190.4, 172.3, 159.6, 138.4, 133.2, 128.9, 128.7, 116.4, 13.3, 11.3 ppm.

3-(4'-Chlorobenzoyl)benzaldehyde (3cf): Following general procedure B, 3cf was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[S5] 1H NMR (400 MHz, CDCl$_3$): δ10.07 (s, 1 H), 8.22 (t, $J=4.0$ Hz, 1 H), 8.10 (dt, $J=8.0$, 4.0 Hz, 1 H), 8.03 (dt, $J=8.0$, 4.0 Hz, 1 H), 7.74 (d, $J=8.0$ Hz, 2 H), 7.67 (t, $J=8.0$ Hz, 1 H), 7.47 ppm (d, $J=8.0$ Hz, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 194.2, 191.2, 139.6, 138.1, 136.4, 135.2, 135.1, 132.9, 131.4, 131.0, 129.4, 128.9 ppm;
mp 93.5-94.3 °C.

4-(4-Chlorobenzoyl)benzonitrile (3cg): Following general procedure B, 3cg was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[S3] \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.83 (d, \(J=8.0\) Hz, 2 H), 7.78 (d, \(J=8.0\) Hz, 2 H), 7.72 (d, \(J=8.0\) Hz, 2 H), 7.47 ppm (d, \(J=8.0\) Hz, 2 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 193.8, 140.8, 139.9, 134.6, 132.3, 131.4, 130.1, 129.0, 117.9, 115.9 ppm.

(4-Chlorophenyl)(4-methoxyphenyl)methanone (3ch): Following general procedure B, 3ch was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[S6] \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.78 (d, \(J=8.0\) Hz, 2 H), 7.69 (d, \(J=8.0\) Hz, 2 H), 7.43 (d, \(J=8.0\) Hz, 2 H), 6.95 (d, \(J=8.0\) Hz, 2 H), 3.87 ppm (s, 3 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 194.3, 163.4, 138.3, 136.6, 132.4, 131.1, 129.8, 128.5, 113.7, 55.5 ppm; mp 123.3-124.0 °C.

4,4'-Carbonyldibenzonitrile (3gg): Following general procedure A, 3gg was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[S7] \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.85 (d, \(J=8.0\) Hz, 4 H), 7.81 ppm (d, \(J=8.0\) Hz, 4 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 193.4, 139.7, 132.5, 130.2, 117.7, 116.6 ppm.
4-(2-Methylbenzoyl)benzonitrile (3ig): Following general procedure B, 3ig was isolated as a colorless liquid. 1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, J=8.0 Hz, 2 H), 7.74 (d, J=8.0 Hz, 2 H), 7.44–7.40 (m, 1 H), 7.31–7.23 (m, 3 H), 2.34 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 196.8, 141.1, 137.5, 136.9, 132.3, 131.4, 131.2, 130.3, 128.9, 125.4, 117.9, 116.2, 20.1 ppm.

4-(4-Methylbenzoyl)benzonitrile (3kg): Following general procedure B, 3kg was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[53] 1H NMR (400 MHz, CDCl$_3$): δ 7.83 (d, J=8.0 Hz, 2 H), 7.76 (d, J=8.0 Hz, 2 H), 7.67 (d, J=8.0 Hz 2 H), 7.29 (d, J=8.0 Hz, 2 H), 2.43 ppm (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 196.8, 144.4, 141.6, 133.6, 132.1, 130.3, 130.1, 129.3, 118.0, 115.3, 21.7 ppm.

Naphthalen-1-yl(naphthalen-2-yl)methanone (3nk): Following general procedure B, 3nk was isolated as a white solid. Known compound; the NMR spectroscopic data agree with those described in ref.[58] 1H NMR (400 MHz, CDCl$_3$): δ 8.24 (s, 1 H), 8.10 (d, J=8.0 Hz, 1 H), 8.07 (dd, J=8.0, 2.0 Hz, 1 H), 8.03 (d, J=8.0 Hz, 1 H), 7.95-7.92 (m, 2 H), 7.89 (d, J=8.0 Hz, 1 H), 7.82 (d, J=8.0 Hz, 1 H), 7.64 (dd, J=8.0, 1.2 Hz, 1 H), 7.61-7.57 (m, 1 H), 7.55 (d, J=8.0 Hz, 1 H), 7.53 (d, J=8.0 Hz, 1 H), 7.51-7.46 ppm (m, 2 H); 13C
NMR (100 MHz, CDCl₃): δ 198.0, 136.6, 135.7, 135.6, 133.7, 132.9, 132.3, 131.2, 131.0, 129.7, 128.7, 128.42, 128.4, 127.8, 127.7, 127.3, 126.8, 126.5, 125.7, 125.4, 124.4 ppm; mp 132.7-133.2 °C.

Dibenzofuran-4-yl(p-tolyl)methanone (3km): Following general procedure B, 3km was isolated as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (dd, J=8.0, 1.2 Hz, 1 H), 7.97 (d, J=8.0 Hz, 1 H), 7.81 (d, J=8.0 Hz, 2 H), 7.67 (dd, J=8.0, 1.2 Hz, 1 H), 7.52 (d, J=8.0 Hz, 1 H), 7.46-7.39 (m, 2 H), 7.37-7.33 (m, 1 H), 7.26 (d, J=8.0 Hz, 2 H), 2.43 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 156.3, 153.7, 144.0, 134.9, 130.4, 129.0, 128.4, 127.7, 125.4, 123.8, 123.5, 123.3, 123.1, 122.4, 120.6, 112.1, 21.7 ppm; IR νmax (KBr)/cm⁻¹ 3065, 2915, 2915, 1594, 1487, 1449, 1419, 1377, 1292, 1179, 846, 746; HRMS (ESI) calcd. for C₂₀H₁₅O₂ [M + H] 287.1072, found 287.1065; mp 96.5-97.1 °C.

4. Hg(0) Poisoning Test

As general procedure B, a reactions of 4-iodotoluene 1k (0.5 mmol, 66.3 µL), phenylboronic acid 2a (0.75 mmol, 92.4 mg), nanocopper (0.1 mmol, 6.4 mg), K₃PO₄ (0.5 mmol, 109.4 mg), KF (0.25 mmol, 14.7 mg), and tBuCO₂H (0.25 mmol, 25.8 mg) in PEG-400 (2.0 mL), with the addition of elemental mercury (20 mmol, 4.0 g) (relative to copper) was conducted. Following the reaction for 9 h at 100 °C, the isolated yield of the desired product 3aa was less than 5%, suggesting that the reaction is inhibited by the introduction of Hg(0).
5. References

6. NMR Spectra for Products

^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (400 MHz, CDCl$_3$)
$\text{Figure S10: NMR Spectra for Compound 3oa}$

$\text{1H NMR (400 MHz, CDCl$_3$)}$

$\text{13C NMR (400 MHz, CDCl$_3$)}$
1H NMR (400 MHz, CDCl$_3$)

13C NMR (400 MHz, CDCl$_3$)
Cl

3ch

^{1}H NMR (400 MHz, CDCl$_3$)

Me

Cl

O

3ch

^{13}C NMR (400 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl₃)

13C NMR (400 MHz, CDCl₃)
$^{1}\text{H NMR (400 MHz, CDCl}_3\text{)}$

$^{13}\text{C NMR (400 MHz, CDCl}_3\text{)}$
1H NMR (400 MHz, CDCl$_3$)

13C NMR (400 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (400 MHz, CDCl$_3$)