Supporting Information

Polylactide-\textit{b}-poly(ethylene-\textit{co}-butylene)-\textit{b}-polylactide
thermoplastic elastomers: Role of polylactide crystallization
and stereocomplexation on microphase separation,
mechanical and shape memory properties

Yongfeng Huang, Pengju Pan,* Guorong Shan and Yongzhong Bao

State Key Laboratory of Chemical Engineering, Department of Chemical and
Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027,
China

*Corresponding author. Tel.: +86-571-87951334; email: panpengju@zju.edu.cn
Fig. S1. WAXD patterns of (a) PLA-PEB-PLA and (b) PLLA-PEB-PLLA/PDLA-PEB-PDLA 1/1 blends after melt crystallization at 120 °C for 8h. The wavelength of X-ray is 0.124 nm. Hc and sc represent the homo and stereocomplex crystallites, respectively.
Fig. S2. Tensile stress-strain curves of (a) DL-EB-DL and (b) L-EB-L/D-EB-D 1/1 blends.
Fig. S3. Loading cycles 1, 2, 3, 8, and 13 for DL-EB-DL 6.6-25-6.6 copolymer. The sample was stretched to a strain of 35% at a rate of 20 mm/min, with 2 min delays between cycles.
Fig. S5. DMA curves of (a) storage modulus and (b) tanδ as a function of temperature for DL-EB-DL triblock copolymers.
Fig. S6. DMA curves of (a) storage modulus and (b) tanδ as a function of temperature for L-EB-L/D-EB-D 1:1 blends.
Fig. S7. Shape memory properties of DL-EB-DL triblock copolymers. Left: permanent shape; middle: temporary shape; right: recovered permanent shape.