Supporting materials

Cobalt complexes of BODIPY as precatalyst for the photooxidation of water and DHN

Qiu-Yun Chena,b,*, Meng-Yun Kongb, Pei-Dong Wanga, Su-Ci Menga, Xiao-Lei Xua

aSchool of chemistry and chemical engineering, Jiangsu University, Zhenjiang, 212013, P.R.China. Tel.: +86 0511 8879800; Fax: +86 0511 88791602; * Corresponding author: E-mail address: chenyq@ujs.edu.cn (Q.Y. Chen)

bState key Laboratory of Coordination Chemistry, Nanjing University, 210093, P.R.China

Fig.S1 to Fig. S6
Table S1

Fig. S1a The ESI-MS spectrum of [(m-BDA)CoCl$_2$]-H$_2$O (Co1) in MeCN. The main peak for Co1 at m/z (%) = 297.42 (100) corresponds to species [(m-BDA)Co]$^{2+}$, The 653.42 (76) is attributed to the [(m-BDA)Co+CH$_3$CN+H$_2$O]$^+$.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014
Fig. S1b The ESI-MS spectrum of (Co2) in MeCN. The main peak at m/z (%) = 656.06 (100) corresponds to the species [(m-BDA-e)Co+CH3CN+H2O]+.

Fig. S1c ES-MS spectrum for Co2 in MeCN-H2O reaction system. The peaks at m/z (%) = 656.47 (100) and m/z=297.21, (30%) corresponds to the species[(m-BDA)Co+NO- 3]+ and [(m-BDA)Co]2+, respectively.
Fig. S1d The ESI-MS spectrum of (Co3) in MeCN. The peaks at m/z (%) = 653.055 (100) corresponds to the species [(p-BDA-e)Co+CH3CN+H2O]+.

Fig. S2 The UV-Vis absorption Spectra of m–BDA (a), Co1 (b), Co2 (c), Co3 (d) (10μM) in CH3CN solution.
Fig. S3 Fluorescence changes of Co2 (1 μM, 3mL, MeCN) with the addition of H2O (V_{H2O}:V_{MeCN} =1/600-1/120). The excitation wavelength was 460 nm.

Table S1 Fluorescence quantum yield of Cobalt(III) complexes

<table>
<thead>
<tr>
<th></th>
<th>CH₃CN</th>
<th>CH₃CN-H₂O*</th>
<th>CH₃CN-MeOH*</th>
<th>CH₃CN-CH₃CH₂OH*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1</td>
<td>0.390</td>
<td>0.391</td>
<td>0.357</td>
<td>0.412</td>
</tr>
<tr>
<td>Co2</td>
<td>0.0728</td>
<td>0.615</td>
<td>0.234</td>
<td>0.402</td>
</tr>
<tr>
<td>Co3</td>
<td>0.0653</td>
<td>0.376</td>
<td>0.429</td>
<td>0.325</td>
</tr>
<tr>
<td>m-DBA</td>
<td>-</td>
<td>0.610</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-BDA</td>
<td>-</td>
<td>0.439</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* The volume ratio of CH₃CN-L* is 6:1 (L= H₂O, CH₃OH, CH₃CH₂OH).

Fig.S4a Cyclic voltammograms of Co1 (1 mM) in 0.1 M TBAP in MeCN (black line) and in MeCN:H₂O = 1:1,
Fig. S4b Cyclic voltammograms of Co3 (1 mM) in 0.1 M TBAP in MeCN (black line) and in MeCN:H2O = 1:1, v/v (blue line).

Fig. 4c Cyclic voltammograms of Co(NO3)2·6H2O (1 mM) in 0.1 M TBAP in MeCN (black line) and in MeCN:PB (pH=7.2, 20 mM) = 6:1, v/v (red line) and irradiated by blue LED light (10W) in MeCN:PB (pH=7.2, 20 mM) = 6:1, v/v (blue line).
Fig. 4d Catalytic current profile at E=1.2 V in MeCN-PB (6:1, pH 8.5) for Co2 coated FTO working electrode, 0-60 s, visible light; 60-800 s, green LED light (4W); 801-1699 s, visible light; 1700-1900 s, green LED light.

Fig. S5a UV-vis absorption spectral change for the photooxidation of DHN (1.0×10⁻⁴ M) using Co2 (5×10⁻⁶ M) as the photo-sensitizer in CH₃CN-D₂O (v:v =6:1) solution. a-g= 0, 0.5, 1, 2, 3, 4, 5 h). Irradiation with blue LED light (440-480 nm, 4 W cm⁻²).
Fig. S5b UV-vis absorption at 427 nm in CH$_3$CN-H$_2$O (6:1) system and CH$_3$CN-D$_2$O (6:1) system, respectively, in 0-1 h.

Fig. S5c UV-vis absorption at 427 nm in CH$_3$CN-H$_2$O (6:1) system and CH$_3$CN-D$_2$O (6:1) system, respectively, in 2-5 h.
Fig. S6a The thermal analysis (TG) curve of [(m-BDA)CoCl$_2$]-H$_2$O (Co1). The weight loss of 2.17% (calcd 2.32%) at 20-100ºC for Co1 is attributed to the loss of one water. The 47.38% weight loss in the range of 100-600ºC corresponds to the loss of N-benzyl di(pyridylmethyl)amine groups from m-BDA and one chlorine ions in Co1 (calcd 47.51%). Thermal analysis results confirm the formation of [(m-BDA)CoCl$_2$]-H$_2$O.

Fig. S6b The thermal analysis (TG) curve of Co2 (left) and Co3 (right). The weight loss of 5.20% (calcd 4.52%) at 20-100ºC for Co2 is attributed to the loss of two water molecules. The weight loss of 5.95% in 100-200 ºC corresponds to the loss of one CH$_3$CN molecule (5.21%). The weight losses of 11.27% in 200-300ºC, 15.10% in 300-520ºC, and 15.72% in 520-1000 ºC correspond to the loss of Py-CH$_2$, Py-CH$_2$-N-CH$_2$, and two -CH$_2$ groups, one F atom and the phenyl group from the m-BDA, respectively. Thermal analysis results confirm the formation of [(m-BDA)Co(NO$_3$)$_2$](H$_2$O)$_2$CH$_3$CN (Co2). The weight loss of 10.23% (calcd 11.16%) at 20-278 ºC for Co3 is attributed to the loss of one pyridyl group. The weight loss of 10.12% in 278-298 ºC corresponds to the loss of another pyridyl group (calcd 11.16%). The weight losses of 16.21% (calcd. 16.43%) in 298-632ºC, correspond to the loss of N(CH$_2$)$_3$-from the m-BDA and a coordinated NO$_3$-respectively, and 14.86% weight loss in 632-800 ºC corresponds to the loss of two NO$_3$-groups. Thermal analysis results confirm the existence of [(p-BDA)Co(NO$_3$)$_2$] (Co3).