Electronic Supplementary Information (ESI)

3D ordered nanoporous NiMoO$_4$ for high-performance supercapacitor electrode materials

Seyyed Ebrahim Moosavifard,*a Javad Shamsi,b Saeed Fani, c Saeid Kadkhodazadec

aYoung Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
bDepartment of Chemistry, University of Tehran, Tehran, Iran.
cDepartment of Chemistry, University of Science and Technology, Tehran, Iran.
dChemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.

*Corresponding author. E-mail: info_seyyed@yahoo.com, Tel/Fax: +98 21 82883455
Fig. S1 Characterization of KIT-6 treated at 50°C aging temperature. Low angle XRD pattern (a) indicates clear (211), (220) and (420) reflections which are typical for cubic ordered Mesoporous structure with Ia-3d symmetry. N2-physisorption isotherm (b) is of type IV isotherm with a pronounced capillary condensation step, which is characteristic for high-quality large pore mesoporous material. The pore size distribution (b, in insert) is centered at around 8 nm. TEM image (c) confirmed highly ordered mesoporous structure.
Fig. S2 Wide-angle PXRD pattern of bulk NiMoO₄ (a), and typical SEM image of the bulk NiMoO₄ (b).
Fig. S3 The long-term cycling stability of the bulk NiMoO$_4$ electrode at 7.5 mA cm$^{-2}$ in 3 M KOH electrolyte.