Supplementary Information

Copper incorporated Cu$_x$Mo$_6$S$_8$ ($x \geq 1$) Chevrel phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries

Sang-Gil Wooa, Jong-Yeol Yooa, Woosuk Choa, Min-Sik Parka, Ki Jae Kima, Jae-Hun Kimb, Jeom-Soo Kimc,*; Young-Jun Kima,*

aAdvanced Batteries Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi 463-816, Republic of Korea

bSchool of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea

cDepartment of Chemical Engineering, Dong-A University, Busan 604-714, Republic of Korea
Fig. S1 EDS elemental mapping of product stored for 36 h at 80 °C: (a) SEM image, (b) Mo Lα1, (c) S Kα1, and (d) Cu Kα1.
Fig. S2 FESEM images and PSA results for (a) powder before leaching and (b) powder after being fully leached.
Fig. S3 Voltage profiles of unleached powder (Cu$_2$Mo$_6$S$_8$) at a constant current of 6 mA g$^{-1}$ (0.05C) during first discharge/charge and subsequent discharge.