A reversible cross-linked polymer network based on conjugated polypseudorotaxanes

Shuwen Guo, a Jing Zhang, a Beibei Wang, a Yong Cong, a Xin Chen*b and Weifeng Bu*a

1. General Considerations.

2-(4-Bromophenyl)-1,3-dioxolaneS1, 3S2, 6S3 and 1,4-bis(2-ethylhexyloxy)-1,3-diiodobenzeneS4 were prepared using previously reported procedures, respectively. All reaction operations were performed under an anhydrous Ar atmosphere. Anhydrous tetrahydrofuran (THF) were distilled over Na and benzophenone. Anhydrous diisopropylamine (i-Pr2NH) was dried over CaH2. All chemicals were used as received without any further treatment. 1H NMR and 13C NMR spectra were recorded on Varian 600 MHz or JNM-ECS400 spectrometers with tetramethylsilane (TMS) as an internal standard. Melting points were determined on a Kofler apparatus. Electrospray ionization mass spectra (ESI-MS) were obtained on a Bruker microTOF-Q II. Matrix-assisted laser desorption/ionization time-of-flight mass spectra were recorded on an autoflexIII smartbeam mass spectrometer (Bruker Daltonics). DLS measurements were performed on a Brookhaven BI-200SM spectrometer. TEM images were acquired with an JEM 2100 microscope operating at 200 kV. Luminescence measurements were made on a Hitachi F-7000 spectrofluorimeter with a xenon lamp as the excitation source. Fluorescence lifetimes in solution were measured by using a commercially available time-correlated single-photon counting instrument (Edinburgh Instruments, model FL920 CDT)
excited with a nanosecond flash lamp. The lifetime data were deconvoluted from the instrumental response and fitted to double-exponential equations.

2. Synthetic Procedures

2-(4-Ethynylphenyl)-1,3-Dioxolane: 2-(4-bromophenyl)-1,3-dioxolane1 (0.458 g, 2 mmol), trimethylsilyl acetylene (0.22 g, 2.2 mmol), Pd(PPh$_3$)$_4$ (120 mg, 0.1 mmol), and CuI (40.0 mg, 0.20 mmol) were dissolved in anhydrous i-Pr$_2$NH (40 mL) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 75 °C overnight. Removal of the solvent and further purification by column chromatograph on silica gel (Ethyl acetate/Petroleum ether = 1/10) to give a yellow solid. The resulting yellow solid was dissolved in EtOH (20 mL) and CH$_2$Cl$_2$ (20 mL). K$_2$CO$_3$ (0.56 g) was added and the mixture was stirred at r.t. for 3 h. The mixture was filtered, evaporated, and dried under vacuum to give 2-(4-ethynylphenyl)-1,3-dioxolane as a yellow solid (0.279 g, 80% yield, m.p. 46-47 °C). 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ = 3.01 (s, 1H, HE), 4.03-4.11 (m, 4H, HD), 5.81 (s, 1H, HC), 7.45 (d, 2H, J = 8.0 Hz, HA), 7.52 (d, 2H, J = 8.0 Hz, HB); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ = 138.5, 132.1, 126.4, 122.9, 103.1, 83.3, 77.7, 65.3; ESI-MS calcd for [C$_{11}$H$_{10}$O$_2$+Na]$^+$ 197.0578, found 197.0812.

4: Solid 32 (0.96 g, 2.4 mmol), 2-(4-ethynylphenyl)-1,3-dioxolane (0.348 g, 2 mmol), Pd(PPh$_3$)$_4$ (0.12 g, 0.1 mmol), and CuI (40.0 mg, 0.20 mmol) were dissolved

Fig. S1 synthetic routes of monomer 8 and model compound 2.

in anhydrous THF (40mL) and i-Pr$_2$NH (0.5 g, 5 mmol) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 45 °C overnight. Removal of the solvent and further purification by column chromatograph on silica gel (Ethyl acetate/Petroleum ether = 2/3) to give 4 as a yellow solid (0.445 g, 45% yield, m.p. 64-65 °C). 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ = 1.63 (s, 12H, H$_b$), 2.05 (2H, H$_g$), 4.06-4.14 (m, 4H, H$_f$), 5.82 (s, 1H, H$_e$), 7.47-7.49 (d, 2H, J = 8.0 Hz, H$_d$), 7.55-7.57 (d, 2H, J = 8.0 Hz, H$_c$), 7.60 (s, 1H, H$_b$), 7.67 (s, 1H, H$_a$); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ = 138.5, 135.8, 135.7, 135.3, 135.2, 131.6, 127.8, 126.6, 125.9, 124.8, 124.7, 123.48, 103.2, 103.1, 100.5, 103.1, 100.4, 94.2, 86.96, 80.0 79.9, 65.7, 65.6, 65.4, 65.3, 65.2, 31.4, 31.3, 31.2, 31.1; ESI-MS calcd for [C$_{27}$H$_{25}$O$_4$Br+Na]$^+$ 515.0834, found 515.0674.

5: 4 (0.493 g, 1 mmol), trimethylsilyl acetylene (0.13 g, 1.3 mmol), Pd(PPh$_3$)$_4$ (60 mg, 0.05 mmol), and CuI (20.0 mg, 0.10 mmol) were dissolved in anhydrous THF (20mL) and i-Pr$_2$NH (0.3 g, 3 mmol) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 30 °C for two days. Removal of the solvent and further purification by column chromatograph on silica gel (Ethyl acetate/Petroleum ether = 2/3) to give a yellow solid. The resulting yellow solid was dissolved in EtOH (10 mL) and CH$_2$Cl$_2$ (5 mL). K$_2$CO$_3$ (0.28 g) was added and the mixture was stirred at r.t. for 3 h. The mixture was filtered and the solvent was evaporated under reduced pressure. Then, the crude sample was further purified by column chromatograph on silica gel (Ethyl acetate/Petroleum ether = 1/1) to give 5 as a yellow solid (0.36 g, 82% yield, m.p. 67.2-68.5 °C). 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ = 1.63 (s, 12H, H$_i$), 2.05 (2H, H$_h$), 3.38 (s, 1H, H$_g$), 4.06-4.14 (m, 4H, H$_f$), 5.82 (s, 1H, H$_e$), 7.48-7.50 (d, 2H, J = 8.0 Hz, H$_d$), 7.55-7.57 (d, 2H, J = 8.0 Hz, H$_c$), 7.58 (s, 1H, H$_b$), 7.60 (s, 1H, H$_a$); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ = 138.4, 135.6, 134.9, 131.7, 126.6, 125.8, 125.3, 124.7, 124.2, 123.5, 103.2, 100.0, 99.9, 95.0, 87.4, 82.8, 81.0, 79.7, 79.6, 65.6, 65.3, 31.4, 31.3, 31.2; ESI-MS calcd for [C$_{29}$H$_{26}$O$_4$+Na]$^+$ 461.1729, found 461.2267.

7: 5 (0.439 g, 1 mmol), 633 (0.69 g, 1.2 mmol), Pd(PPh$_3$)$_4$ (60 mg, 0.05 mmol), and CuI (20.0 mg, 0.10 mmol) were dissolved in anhydrous THF (20mL) and i-Pr$_2$NH
(0.3 g, 3 mmol) in an oven-dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 25 °C for 24 hours. After removal of the solvent, the crude sample was further purified by column chromatography on silica gel (Chloroform/Acetone = 2/3) to give 7 as a yellow solid (0.717 g, 81% yield, m.p. 70.0-71.2 °C). 1H NMR (400 MHz, CDCl3, 25 °C) δ = 1.64 (s, 12H, Hg), 2.05 (2H, Hf), 3.85 (s, 8H, Hγ), 3.93-3.40 (m, 8H, Hβ), 4.06-4.14 (m, 4H, Hδ), 4.14-4.16 (m, 8H, Hα) 5.83 (s, 1H, Hε), 6.81-6.83 (d, 1H, J = 8.0 Hz, Hj), 6.86-6.91 (m, 4H, Hk), 7.07 (s, 1H, Hl), 7.11-7.13 (d, 1H, J = 8.0 Hz, Hm), 7.48-7.50 (d, 2H, J = 8.0 Hz, Hn), 7.56-7.58 (d, 2H, J = 8.0 Hz, Hn), 7.59 (s, 1H, Hn), 7.61 (s, 1H, Hn); 13C NMR (100 MHz, CDCl3, 25 °C) δ = 149.6, 148.7, 148.3, 138.3, 134.8, 134.6, 131.6, 126.5, 125.6, 124.7, 121.5, 116.7, 115.3, 114.1, 113.3, 103.1, 99.8, 95.5, 94.6, 87.7, 86.0, 79.8, 69.6, 69.2, 65.5, 65.3, 31.4; ESI-MS calcd for [C53H56O16+Na]+ 907.3669, found 907.3665.

8: 7 (0.885 g, 1 mmol), sodium hydroxide (0.5 g, 12.5 mmol), and toluene (25 ml) were added to a Schlenk tube under argon. The mixture was stirred at 110 °C overnight. The mixture was filtered and the solvent was evaporated under reduced pressure. Then, the crude sample was further purified by column chromatography on silica gel (Chloroform/Acetone = 2/3) to give a yellow solid. The resulting yellow solid was dissolved in acetone (10 mL) and CH2Cl2 (5 mL). p-Toluenesulfonic acid (0.28 g) was added and the mixture was stirred at r.t. for overnight. The resulting yellow solution was washed with water (10 mL), extracted with CH2Cl2 (3 × 10 mL), and dried over anhydrous magnesium sulfate. The solvent was evaporated under vacuum to give 8 as a yellow solid (0.327 g, 45% yield, m.p. 114.0-115.0 °C). 1H NMR (400 MHz, CDCl3, 25 °C) δ = 3.47-3.48 (m, 2H, Hε), 3.85 (s, 8H, Hγ), 3.94 (m, 8H, Hβ), 4.16 (m, 8H, Hα), 6.82-6.84 (d, 1H, J = 8.0 Hz, Hj), 6.86-6.91 (m, 4H, Hk), 7.07 (s, 1H, Hl), 7.14-7.16 (d, 1H, J = 8.0 Hz, Hm), 7.70 (2H, Hn), 7.71 (2H, Hn) 7.88 (d, 2H, Hn), 10.04 (s, 1H, Hn); 13C NMR (100 MHz, CDCl3, 25 °C) δ = 191.3, 150.0, 148.8, 148.4, 135.8, 135.7, 135.5, 132.3, 129.6, 128.0, 126.7, 125.9, 125.0, 124.6, 124.4, 121.4, 116.8, 115.0, 114.0, 113.2, 96.5, 94.2, 90.6, 85.6, 83.4, 83.2, 80.9, 80.8,
9: 1,4-bis((2-ethylhexyl)oxy)-1,3-diiodobenzene4 (0.137 g, 0.233 mmol), 8 (0.169 g, 0.233 mmol), Pd(PPh$_3$)$_4$ (13 mg, 11.65 μmol), and CuI (4.4 mg, 23.30 μmol) were dissolved in anhydrous THF (20 mL) and i-Pr$_2$NH (5 ml) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 45 °C for three days. Upon cooling to room temperature, the solution was concentrated to a small volume and precipitated into methanol (200 mL), leading to the formation of a yellow solid. This dissolution-precipitation process was repeated for three times to give 10 as a yellow solid (181 mg, 74% yield, $M_n = 18.5$ kDa, PDI = 1.86). 1H NMR (400 MHz, CDCl$_3$, 25 °C) $\delta = 0.87$ (br, 12H, H$_{p,q}$), 1.27 (br, 16H, H$_{l-o}$), 1.69 (br, 2H, H$_k$), 3.81 (m, 8H, H$_{\gamma}$), 3.84 (s, 4H, H$_k$), 3.90 (m, 8H, H$_{\beta}$), 4.01 (m, 2H, H$_{\alpha 1}$), 4.14 (m, 6H, H$_{\alpha-\alpha'}$), 6.79 (d, 1H, $J = 8.4$ Hz, H$_h$), 6.86-6.91 (m, 4H, H$_i$), 7.01 (s, 1H, H$_g$), 7.01-7.08 (m, 2H, H$_e$), 7.16 (d, 1H, $J = 8.4$ Hz, H$_d$), 7.71-7.73 (2H, H$_c$) 7.73-7.75 (2H, H$_d$), 7.85-7.87 (2H, H$_b$), 10.02 (s, 1H).

10: 9 (120 mg) and benzylamine were dissolved in anhydrous THF (15 mL) and in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 40 °C for two days. The in-situ 1H NMR spectra revealed that the reaction conversion was larger than 99%. Upon cooling to room temperature, the solution was concentrated to a small volume and precipitated into methanol (200 mL), leading to the formation of a yellow solid. The solid was dissolved in CH$_2$Cl$_2$ (20 mL) and washed with a 5% K$_2$CO$_3$ aqueous solution. After drying over MgSO$_4$, the solvent was removed under a reduced pressure. The residue was redissolved in a small volume of CH$_2$Cl$_2$ and precipitated into a large volume of acetone. This polymer was further purified by the two dissolution-precipitation cycles. The precipitate was separated, washed with acetone and dried in vacuo. The polymer 10 was obtained as a yellow solid (119 mg, 92% yield). 1H NMR (400 MHz, CDCl$_3$, 25 °C) $\delta = 0.82$ (br, 12H, H$_{l(a)}$), 1.25 (br, 16H, H$_{p,a}$), 1.69 (br, 2H, H$_e$), 3.80 (m, 8H, H$_i$), 3.84 (m, 4H, H$_c$),
3.90 (m, 8H, H_β), 3.99 (m, 2H, H_α), 4.13 (m, 6H, H_α'), 4.83 (s, 2H, H_a), 6.77 (d, 1H, J = 8.4Hz, H_e), 6.86 (m, 4H, H_g) 7.00 (s, 1H, H_d), 7.07 (m, 2H, H_o), 7.15 (d, 1H, J = 8.4Hz, H_d), 7.31-7.34 (m, 5H, H_{1-n}), 7.62 (2H, H_i), 7.71-7.73 (2H, H_h) 7.75-7.77 (2H, H_j), 8.36 (s, 1H, H_b).

1: 9 (115mg) and sodium triacetoxyborohydride were dissolved in anhydrous CH_2Cl_2 (20 mL) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 35 °C for two days. The in-situ ^1H NMR spectra revealed that the reaction conversion was larger than 99%. Upon cooling to room temperature, the solution was filtered, concentrated to a small volume, and precipitated into methanol (200 mL), leading to the formation of a yellow solid. The polymer was further purified by the two dissolution-precipitation cycles. The polymer 1 was obtained as a yellow solid (107 mg, 93% yield). ^1H NMR (600 MHz, CD_2Cl_2, 25 °C) δ = 0.76 (br, 12H, H_t,u), 1.19 (br, 16H, H_p-s), 1.60 (br, 2H, H_o) 3.66 (m, 8H, H_γ), 3.68 (m, 4H, H_a,b), 3.71 (m, 12H, H_β,o), 3.88 (m, 2H, H_α), 4.02 (m, 6H, H_α'), 6.73 (1H, H_e) 6.79 (m, 4H, H_g), 6.95 (s, 1H, H_d), 7.03 (s, 2H, H_i), 7.09 (s, 1H, H_a), 7.16 (s, 1H, H_n), 7.24-7.30 (m, 6H, H_{k-m}), 7.48 (m, 2H, H_j), 7.64 (m, 2H, H_h).

11: Iodobenzene (0.137 g, 0.233 mmol), 8 (0.169 g, 0.233 mmol), Pd(PPh_3)_4 (13 mg, 11.65 μmol), and CuI (4.4 mg, 23.30 μmol) were dissolved in anhydrous THF (20 mL) and i-Pr_2NH (0.2 g, 2 mmol) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 45 °C for one day. After removal of the solvent, the crude product was further purified by column chromatograph on silica gel (Chloroform/Acetone = 2/3) to give 11 as a yellow solid (166 mg, 81 % yield, m.p. 125-126 °C). ^1H NMR (400 MHz, CDCl_3, 25 °C) δ = 3.85 (m, 8H, H_α), 3.94 (m, 8H, H_β), 4.01 (s, 2H, H_α'), 4.16 (m, 6H, H_α'), 6.82 (d, 1H, J = 8.0 Hz, H_i), 6.89 (m, 4H, H_k), 7.01 (s, 1H, H_d), 7.15 (d, 1H, J = 8.0 Hz, H_i), 7.46-7.36 (m, 6H, H_{g,h}), 7.58 (m, 4H, H_e), 7.72 (d, 2H, H_h), 7.77 (d, 2H, H_d), 7.88 (d, 2H, H_b), 10.04 (s, 1H, H_a); ^13C NMR (100 MHz, CDCl_3, 25 °C) δ = 191.5, 149.9, 149.0, 148.8, 135.0, 134.7, 133.1, 132.3, 132.2, 132.1, 132.0, 131.9, 131.8, 131.7,
12: 11 (160 mg, 0.205 mmol) and benzylamine (44 mg, 0.41 mmol) were dissolved in anhydrous THF (10 mL) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 40 °C for a day. The in-situ 1H NMR spectra revealed that the reaction conversion was larger than 99%. The solvent was removed under a reduced pressure. The crude product was recrystallised from dichloromethane and methanol. Compound 12 was isolated as a yellow solid (162 mg, 92% yield, m.p. 130-131 °C). 1H NMR (400 MHz, CDCl₃, 25 °C) $\delta = 3.84$ (m, 8H, Hγ), 3.92 (m, 8H, Hβ), 4.01 (m, 2H, Hα₁), 4.16 (m, 4H, Hα₂), 4.85 (s, 2H, Hb), 6.80-6.82 (d, 1H, $J = 8.0$ Hz, Ha) 6.86-6.91 (m, 4H, Hp) 7.01 (s, 1H, Ho) 7.13-7.15 (d, 1H, $J = 8.0$ Hz, Hm), 7.29 (m, 1H, Hl), 7.33-7.37 (m, 10H, Hb-k), 7.57-7.60 (m, 4H, Hg) 7.60-7.62 (m, 2H, Hd), 7.74-7.75 (m, 2H, Hc,d), 7.77-7.79 (d, 2H, Hl), 8.40 (s, 1H, Ha); 13C NMR (150 MHz, CDCl₃, 25 °C) $\delta = 160.1, 148.8, 148.0, 147.5, 133.8, 133.5, 130.7, 127.7, 127.4, 127.2, 126.1, 124.6, 124.4, 124.3, 124.2, 122.1, 120.4, 115.6, 113.1, 112.3, 94.9, 94.4, 94.2, 86.7, 86.6, 86.4, 85.4, 70.4, 70.3, 69.0, 68.8, 68.4, 68.3, 64.1; ESI-MS calcd for [C₄₅H₄₀O₉+Na]$^+$ 899.3196, found 899.3211.

2: 12 (154 mg, 0.159 mmol) and sodium triacetoxyborohydride (67 mg, 0.32 mmol) were dissolved in anhydrous CH₂Cl₂ (20 mL) in an oven dried Schlenk flask under an argon atmosphere. The resulting solution was allowed to stir at 35 °C for two days. The in-situ 1H NMR spectra revealed that the reaction conversion was larger than 99%. The solvent was removed under a reduced pressure. The crude product was recrystallised from dichloromethane and methanol. Compound 2 was isolated as a yellow solid (0.145 mg, 94% yield, m.p. 134-135 °C). 1H NMR (400 MHz, CD₂Cl₂, 25 °C) $\delta = 7.68$ (s, 1H, Hc), 7.66 (s, 1H, Hd), 7.53 (m, 4H, He), 7.47-7.49 (2H, Hd), 7.32 (m, 8H, Hg-i), 7.27 (m, 4H, Hj-k), 7.18 (m, 1H, Hl), 7.09 (m,1H, Ho), 6.96 (dd, 1H, Hm), 6.80 (m, 4H, Hp) 6.77 (d, 1H, Hn), 4.07- 4.03 (m, 6H, Hαα), 3.93 (m, 2H, Hα₁), 3.85 (m, 8H, Hβ), 4.01 (m, 2H, Hα₁), 4.16 (m, 4H, Hα₂), 4.85 (s, 2H, Hb), 6.80-6.82 (d, 1H, $J = 8.0$ Hz, Ha) 6.86-6.91 (m, 4H, Hp) 7.01 (s, 1H, Ho) 7.13-7.15 (d, 1H, $J = 8.0$ Hz, Hm), 7.29 (m, 1H, Hl), 7.33-7.37 (m, 10H, Hb-k), 7.57-7.60 (m, 4H, Hg) 7.60-7.62 (m, 2H, Hd), 7.74-7.75 (m, 2H, Hc,d), 7.77-7.79 (d, 2H, Hl), 8.40 (s, 1H, Ha); 13C NMR (150 MHz, CDCl₃, 25 °C) $\delta = 160.1, 148.8, 148.0, 147.5, 133.8, 133.5, 130.7, 127.7, 127.4, 127.2, 126.1, 124.6, 124.4, 124.3, 124.2, 122.1, 120.4, 115.6, 113.1, 112.3, 94.9, 94.4, 94.2, 86.7, 86.6, 86.4, 85.4, 70.4, 70.3, 69.0, 68.8, 68.4, 68.3, 64.1; ESI-MS calcd for [C₆₄H₅₆NO₈+Na]$^+$ 989.3904, found 989.3877.
3.80 (3.80, 8H, Hβ), 3.76 (br, 4H, Hα,b), 3.69 (m, 8H, Hγ); 13C NMR (150 MHz, CDCl₃, 25 °C) δ = 149.8, 149.0, 148.5, 134.8, 134.5, 131.8, 131.7, 128.7, 128.4, 128.2, 127.1, 125.4, 123.1, 123.0, 121.6, 121.4, 116.6, 115.5, 114.1, 113.3, 95.9, 95.4, 95.2, 87.7, 87.6, 87.4, 86.4, 71.4, 71.3, 70.0, 69.8, 69.7, 69.4, 69.3; ESI-MS calcd for [C₆₄H₅₇NO₈+Na]+ 990.3982, found 990.4005.

3. Details of the experiments for cross-linking / de-crosslinking.

Details of the experiments for cross-linking/de-crosslinking in fluorescence titration experiment: A. 20.7 mg 60% HFA aqueous solution were dissolved in 20 ml CH₃CN, resulting in a CH₃CN solution of HFA with a concentration of 4.25 × 10⁻³ mol/L. The solution of 1 (1.7 × 10⁻⁵ mol/L, 2 mL) was treated stepwise with the above HFA solution. B. 21.5 mg P₁-t-Bu were dissolved in 13 ml CH₂Cl₂, resulting in a CH₂Cl₂ solution of P₁-t-Bu with a concentration of 4.25 × 10⁻³ mol/L. The solution was used to titrate the solution of HFA-1.

Dissolution of 60% HFA aqueous solution in CD₃CN and P₁-t-Bu in CD₂Cl₂ were used to carry out ¹H NMR experiments for cross-linking/de-crosslinking.

The system was not biphasic and 60% HFA aqueous solution were dissolved in acetonitrile. The 60% HFA aqueous solution were purchased from Alfa Aesar.

Fig. S2 Left: Chemical structure of 2. Right: 1H NMR spectra (400 MHz, in CD$_2$Cl$_2$, 2.0×10$^{-3}$ mol L$^{-1}$) recorded on 2 (a), HFA-2 produced by adding 1.1 eq of HFA into the solution of 2 (b), and 2 obtained by treating 1.2 eq of P$_1$-t-Bu to HFA-2 (c).

Fig. S3 MALDI-TOF mass spectrum of HFA-2 measured in the positive-ion mode using CH$_2$Cl$_2$ as the solvent.
Fig. S4 DLS plots of a) 2 (in CH$_2$Cl$_2$, 2.0×10$^{-3}$ mol L$^{-1}$ for the DB24C8 group), b) HFA-1 produced by adding 1 eq of HFA into the solution of 2, c) 2 obtained by treating HFA-2 with 1.1 eq of P$_1$-t-Bu.

Fig. S5 A TEM image of HFA-2 as drop cast onto a carbon-coated copper grid at the DB24C8 concentration of 2×10$^{-3}$ mol L$^{-1}$.

Fig. S6 DLS plots of a) 1 (in CH$_2$Cl$_2$, 2.0×10$^{-3}$ mol L$^{-1}$ for the DB24C8 group), b) HFA-1 produced by adding 1 1.1 eq of HFA into the solution of 1, c) 1 obtained by treating HFA-1 with 1.1 eq of P$_1$-t-Bu.
Fig. S7 Fluorescence spectra of 2 \((2.5 \times 10^{-5} \text{ mol L}^{-1})\) upon titration with 1.1 eq of HFA and 1.2 eq of P\(_1\)-t-Bu.

Table S1. Luminescence Lifetimes \(\tau_1\) and \(\tau_2\) for 1 and TFA-1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\tau_1) (ns)</th>
<th>RW(_1) (%)(^b)</th>
<th>(\tau_2) (ns)</th>
<th>RW(_2) (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55±0.06</td>
<td>38.65±1.93</td>
<td>1.12±0.11</td>
<td>61.35±3.07</td>
</tr>
<tr>
<td>HFA-1(^c)</td>
<td>0.66±0.07</td>
<td>55.16±2.76</td>
<td>1.32±0.13</td>
<td>44.84±2.24</td>
</tr>
<tr>
<td>1(^d)</td>
<td>0.49±0.05</td>
<td>32.90±1.63</td>
<td>1.07±0.11</td>
<td>67.10±3.36</td>
</tr>
</tbody>
</table>

\(\tau_1\) and \(\tau_2\) are in \(\text{ns}\) and RW\(_1\) and RW\(_2\) are in \%. \(\text{CH}_2\text{Cl}_2\) solutions (for the DB24C8 group) monitored at 483 nm upon excitation at 360 nm. \(^b\) Relative weighting (RW) of components in double exponential fits. \(^c\) Produced by adding 1.0 eq of HFA into the solution of 1. \(^d\) Produced by adding 1.1 eq of P\(_1\)-t-Bu into the solution of HFA-1.

Fig. S8 \(^1\)H NMR spectrum (600 MHz, in CD\(_2\)Cl\(_2\), 25 °C) of 1.
Fig. S9 1H NMR spectrum (400 MHz, in CD$_2$Cl$_2$, 25 °C) of 2.

Fig. S10 13C NMR spectrum (150 MHz, in CDCl$_3$, 25 °C) of 2.
Fig. **S11** 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 2-(4-Ethynylphenyl)-1,3-Dioxolane.

Fig. **S12** 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 2-(4-Ethynylphenyl)-1,3-Dioxolane.
Fig. S13 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 4.

Fig. S14 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 4.
Fig. S15 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 5.

Fig. S16 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 5.
Fig. S17 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 7.

Fig. S18 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 7.
Fig. S19 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 8.

Fig. S20 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 8.
Fig. S21 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 9.

Fig. S22 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 10.
Fig. S23 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 11.

Fig. S24 13C NMR spectrum (100 MHz, in CDCl$_3$, 25 °C) of 11.
Fig. S25 1H NMR spectrum (400 MHz, in CDCl$_3$, 25 °C) of 12.

Fig. S26 13C NMR spectrum (150 MHz, in CDCl$_3$, 25 °C) of 12.

4. References