Supporting Information

2,4-Dinitrobenzenesulfonic Acid as an Efficient Brønsted Acid-
Catalyzed Controlled/Living Ring-Opening Polymerization of \(\varepsilon \)-
caprolactone

Huiying Wang, Wenzhuo Wu, Zhenjiang Li, Xu Zhi, Cheng Chen, Chengxu Zhao, Xiaopei Li,
Qiguo Zhang, Kai Guo*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology
and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing,
211816, China

Fax + 86 25 5813 9935; E-mail: zjli@njtech.edu.cn; guok@njtech.edu.cn

Syntheses of End-Functionalized and \(a,ω \)-Dihydroxy Telechelic Poly(\(\varepsilon \)-caprolactone)

![Chemical structure of End-functionalized and \(a,ω \)-Dihydroxy Telechelic Poly(\(\varepsilon \)-caprolactone)](image)

FIGURE S1 \(^1\)H NMR spectrum of End-functionalized PCL initiated from propargyl
alcohol in CDCl\(_3\).
FIGURE S2 1H NMR spectrum of End-functionalized PCL initiated from 5-hexen-1-ol in CDCl$_3$.

FIGURE S3 1H NMR spectrum of End-functionalized PCL initiated from 2-hydroxyethyl methacrylate in CDCl$_3$.
FIGURE S4 1H NMR spectrum of PCL initiated from Pentaerythritol in CDCl$_3$.

FIGURE S5 1H NMR spectrum of $a,ω$-Dihydroxy Telechelic PCL initiated from 1,3-Propanediol in CDCl$_3$.
Diblock Copolymers of ε-Caprolactone and δ-Valerolactone, Trimethylene Carbonate.

FIGURE S6 1H NMR spectrum of PCL-b-PVL initiated from BnOH in CDCl$_3$.

FIGURE S7 1H NMR spectrum of PCL-b-PTMC initiated from BnOH in CDCl$_3$.
The calculation details of ε-CL conversion

The calculated conversions of ε-CL were obtained from 1H NMR spectra of reaction mixtures, and the details were as follows: the integral area of the signal of methylene protons at 4.25 ppm of ε-CL monomer was appointed to 1, and then the integral area of the signal at 4.06 ppm (–CH₂CH₂O–)ₙ was appointed to n. based on the formula, conv. = n/(n+1) * 100%.