Supporting Information

Simple fabrication and electrochemical performance of porous and double-shelled macroporous CuO nanomaterials with a thin carbon layer

HyunMee Kim‡ a, Hyung-Seok Lim‡ a, Yu-Jeong Kim a, Yang-Kook Sunb and Kyung-Do Suh* a

*corresponding author

‡ These authors contributed equally to this work.

a Division of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea. E-mail: kdsuh@hanyang.ac.kr; Fax: +82-2-2220-4680; Tel: +82-2-2220-0526.

b Division of WCU Engineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea. E-mail: yksun@hanyang.ac.kr; Tel: +82-2-2220-1749
Figure S1. (a) FT-IR spectrum, (b) SEM image of poly(MAA/EGDMA) microspheres and OM images of poly(MAA/EGDMA) microspheres dispersed in aqueous solutions pHs of (c) 6.44 and (d) 9.05.
Figure S2. (a) EDX profiles of porous CuO/C and double-shelled 3DOM CuO/C and (b) element contents of C, O and Cu in two types of CuO/C samples.
Figure S3. XPS spectra of (a, b and c) porous CuO/C submicron spheres and (d, e and f) double-shelled 3DOM CuO/C: (a and d) Cu2p, (b and e) O1s and (c and f) C1s.
Figure S4. (a) Digital photograph of vials containing Cu aqueous solutions with different pHs (pH6~11) after adding CuSO₄ solution. (b) Size distribution of Cu precursors formed in aqueous solutions with different pHs.
Figure S5. Schematic illustration of polymer networks with Cu precursors in Cu precursors/poly(MAA/EGDMA) composite microspheres prepared under different pH conditions and FIB-SEM images of (a) porous CuO/C submicron spheres and (b) macroporous 3DOM CuO/C after heat treatment.
Figure S6. HR-TEM images at (a, d, g and j) low and (b, e, h, k, m, n and o) high magnifications and (c, f, i, and l) STEM images of Cu precursors/poly(MAA/EGDMA) composite microspheres prepared under different pH conditions: (pH 6.55: a, b and c), (pH 7.44: d, e and f), (pH 9.05: g, h and i), (pH 10.05: j, k and l) and (pH 11.21: m, n and o).
Figure S7. Cross-sectional(FIB-SEM) images of composite electrodes containing (a) porous Cu/O submicron spheres and (b) double-shelled 3DOM CuO/C after 100 cycles.
Figure S8. Electrochemical impedance spectroscopy (EIS) of the fresh cells containing (black square) porous CuO/C submicron spheres, (red circle) double-shelled 3DOM-CuO/C and (green triangle) commercial CuO nanoparticles.