Supporting Information

A facile fluorescence method for endonuclease detection using exonuclease III-aided signal amplification of molecular beacon

Chan Song, Qi Zhang, Gui-Mei Han, Yi-Chen Du and De-Ming Kong

"State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.

"Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.

E-mail: kongdem@nankai.edu.cn; Fax: (+86)-22-23502458; Tel: (+86)-22-23500938
Table S1 The oligonucleotides used in this work.

<table>
<thead>
<tr>
<th>Oligonucleotides</th>
<th>Oligonucleotide Sequences (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hairpin substrate 1</td>
<td>TACGACGATCTGA<sub>G</sub>ATCTTGAGAAT<sub>T</sub>CTTTTGA<sub>G</sub>AT<sub>T</sub>TCCTAGACATCGTCGTAGCTTTTT</td>
</tr>
<tr>
<td>Hairpin substrate 2</td>
<td>TACGACGATCTGA<sub>G</sub>ATCTTGAGAAT<sub>T</sub>CTTTTGA<sub>G</sub>AT<sub>T</sub>TCCTAGACATCGTCGTAGCTTTTT</td>
</tr>
<tr>
<td>MB</td>
<td>(DABCYL)-CATCG<sub>A</sub>CTACG<sub>G</sub>ATGTCTGA<sub>G</sub>-(FAM)</td>
</tr>
</tbody>
</table>

Fig. S1 Signal-to-noise (F/F_0) with different amounts of Exo III. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL^{−1} EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [MB] = 200 nM.

Fig. S2 Signal-to-noise (F/F_0) with different concentrations of Hairpin substrate 1. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL^{−1} EcoRI, respectively. [MB] = 200 nM, [Exo III] = 2.0 U mL^{−1}.
Fig. S3 Signal-to-noise \((F/F_0)\) with different concentrations of MB. \(F_0\) and \(F\) are the fluorescence intensity in the absence and presence of 100 U mL\(^{-1}\) EcoRI, respectively. \([\text{Hairpin substrate 1]}\) = 100 nM, \([\text{Exo III}]\) = 2.0 U mL\(^{-1}\).

Fig. S4 Signal-to-noise \((F/F_0)\) versus incubation time at 37 °C. \(F_0\) and \(F\) are the fluorescence intensity in the absence and presence of 100 U mL\(^{-1}\) EcoRI, respectively. \([\text{Hairpin substrate 1]}\) = 100 nM, \([\text{MB}]\) = 200 nM, \([\text{EcoRI}]\) = 100 U mL\(^{-1}\), \([\text{Exo III}]\) = 2.0 U mL\(^{-1}\).
Fig. S5 (A) Fluorescence enhancement and (B) signal-to-noise (F/F_0) of this sensing method at different incubation temperature. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL$^{-1}$ EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [MB] = 200 nM, [EcoRI] = 100 U mL$^{-1}$, [Exo III] = 2.0 U mL$^{-1}$.