Enhanced visible light photocatalytic degradation of Rhodamine B by Bi/Bi$_2$MoO$_6$ hollow microsphere composites

Jinliang Lia, Xinjuan Liu*b, Likun Pan*a, Wei Qina, and Zhuo Suna

aEngineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062 China, Fax: +86 21 62234321; Tel: +86 21 62234132; E-mail: lkpan@phy.ecnu.edu.cn

bCenter for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China; E-mail: lxi669635@126.com

Fig. S1 Nitrogen adsorption-desorption isotherms and corresponding pore size distribution curves (inset) of (a)BMO-1, (b)BMO-3 and (c)BMO-4.
Fig. S2 Bar plot showing the remaining RhB in the solution after reaching the adsorption equilibrium in the dark by using (a) Bi$_2$MoO$_6$, (b) BMO-1, (c) BMO-2, (d) BMO-3 and (e) BMO-4 in 30 min.

Fig. S2 shows the result of RhB adsorption experiments. The normalized temporal concentration changes (B/B_0) of RhB during the adsorption process are proportional to the normalized maximum absorbance (A/A_0), which can be derived from the change in the RhB absorption profile during the adsorption process.