Supporting Information (Figure S1, S2, S3, S4, S5)

Composite Banded Core and Non-banded Shell Transition Patterns in Stereocomplexed Poly(lactide acid) Induced by Strongly Interacting Poly(p-vinyl phenol)

Hikmatun Ni’mah, a,b Eamor M. Woo, a,* and Shih-Min Chang a

aDepartment of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.

bDepartment of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya, East Java 60111, Indonesia

*Author to whom correspondence should be addressed: emwoo@mail.ncku.edu.tw
Fax: +886 6 234-4496, Tel: +886 6 275-7575 Ex. 62670.

Figure S1. POM and OM images showing the crystalline morphology of sc-PLA/PVPh (80/20) blend at various crystallization temperatures (T_c).
(a) sc-PLA/PVPh (95/5) 240°C-1min-\(T_c\)

(b) sc-PLA/PVPh (90/10) 240°C-1min-\(T_c\)

Figure S2. Crystalline morphology of (a) sc-PLA/PVPh (95/5) and (b) sc-PLA/PVPh (90/10) blends at various crystallization temperatures (\(T_c\)).

Figure S3. Scheme of whole spherulite and AFM micrograph of (IV) inter-lamellar junction in non-banded peripheral region of the spherulite. [Regions-I, II, III are discussed in the main texts.]
Figure S4. FTIR spectra in hydroxyl-stretching region for (PLLA/PDLA)/PVPh blend of various compositions as indicated on traces.

sc-PLA/PVPh (70/30) 240°C-\(t_{\text{max}}\)-170°C

![Images showing crystalline morphology](image)

Figure S5. The crystalline morphology of sc-PLA/PVPh (70/30) blend at \(T_c=170^\circ\text{C}\) and various \(t_{\text{max}}\).

The results in Fig. S5 indicate that the time held at \(T_{\text{max}}=240^\circ\text{C}\) (1, 3, 5 min, respectively) significantly influences the spherulite morphology. For short \(t_{\text{max}}\) (1 min), the spherulite assumes a morphology of ring-banded core superimposed on dendritic lamellae, while for \(t_{\text{max}}\) increased to 3 and 5 min, respectively, the ring-band pattern in the central core entirely disappears and the dendritic patterns further intensify to flower-petal shapes.