Electronic Supporting Information

for

Thermal Stability and Swelling Behaviors of Nanoscale Ionic Materials (NIMs) with Tuned Structure

Kun-Yi Andrew Lina,b, Youngjune Parka,c, Camille Petita,d, and Ah-Hyung Alissa Parka,*

aDepartments of Earth and Environmental Engineering \& Chemical Engineering, and Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA

bDepartment of Environmental Engineering, National Chung Hsing University, 402 Taiwan R.O.C.

cSK Innovation, 325, Exporo, Yuseong-gu, Daejeon 305-712, Republic of Korea.

dDepartment of Chemical Engineering, Imperial College London, SW7 2AZ, UK

*Corresponding author: Phone: +1-212-854-8989; Fax: +1-212-854-7081; E-mail: ap2622@columbia.edu
Figure S1. Schematic of the in-situ measurements of CO$_2$ capture capacity as well as thermally- and CO$_2$-induced swelling of NIMs. (1) FT-IR spectrometer (Nicolet 6700, Thermo Fisher Scientific Inc.); (2) ATR optics and high pressure fluid cell (Golden Gate$^{\text{TM}}$, Speca Ltd., UK); (3) Gas inlet; (4) Digital pressure gauge; (5) Gas cylinder; (6) Data acquisition system; (7) Temperature controller; (8) Vent; (9) Diamond crystal; (10) Mirrors; (11) Infrared light source.

Figure S2. Thermal stability of Ionized PEGs with various molecular weights and the corresponding PEGs determined using a TGA, in oxygen environment with a ramping rate 5 ºC/min.

Figure S3. Thermal stability of NIMs with various chain lengths and the corresponding PEGs determined using a TGA, in oxygen environment with a ramping rate 5 ºC/min.

Figure S4. Thermal stability of NIMs with various chain lengths and the corresponding Ionized PEGs determined using a TGA, in oxygen environment with a ramping rate 5 ºC/min.

Figure S5. Thermal stabilities of NIMs with the same core fraction but different chain lengths determined using a TGA, in oxygen environment with a ramping rate 5 ºC/min.

Figure S6. CO$_2$ capture capacity in NIMs with various chain lengths at 60 ºC and P$_{CO_2}$ = 4 – 55 atm.

Figure S7. Raman spectra in the ν_6(CH$_2$) and ν_5(CH$_2$) regions for PEGs and NIM-I-PEGs.
Figure S1. Schematic of the in-situ measurements of CO$_2$ capture capacity as well as thermally- and CO$_2$-induced swelling of NIMs. (1) FT-IR spectrometer (Nicolet 6700, Thermo Fisher Scientific Inc.); (2) ATR optics and high pressure fluid cell (Golden Gate$^\text{TM}$, Speca Ltd., UK); (3) Gas inlet; (4) Digital pressure gauge; (5) Gas cylinder; (6) Data acquisition system; (7) Temperature controller; (8) Vent; (9) Diamond crystal; (10) Mirrors; (11) Infrared light source.
Figure S2. Thermal stability of Ionized PEGs with various molecular weights and the corresponding PEGs determined using a TGA, in oxygen environment with a ramping rate 5 °C/min.
Figure S3. Thermal stability of NIMs with various chain lengths and the corresponding PEGs determined using a TGA, in oxygen environment with a ramping rate 5 °C/min.
Figure S4. Thermal stability of NIMs with various chain lengths and the corresponding Ionized PEGs determined using a TGA, in oxygen environment with a ramping rate 5 °C/min.
Figure S5. Thermal stabilities of NIMs with the same core fraction but different chain lengths determined using a TGA, in oxygen environment with a ramping rate 5 °C/min.
Figure S6. CO₂ capture capacity in NIMs with various chain lengths at 60 °C and PCO₂ = 4 – 55 atm.
Figure S7. Raman spectra in the ν_a(CH$_2$) and ν_s(CH$_2$) regions for PEGs and NIM-I-PEGs.