pH Responded Reversible Supramolecular Self-assembly of Water-soluble
Amino-imidazole-armed Perylene Diimide Dye for Biological Application

Wei Zhang,ab Shi-Yu Gan,a Feng-Hua Li,a Dong-Xue Han,a Qi-Xian Zhang,a Li Niu*a

aEngineering Laboratory for Modern Analytical Techniques, c/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022, PR China

bUniversity of Chinese Academy of Sciences Beijing 100039, P. R. China

*Corresponding author. Tel: +86 431 85262425; Fax:+86-431-8526 2800; E-mail: lniu@ciac.ac.cn
**Supporting Information Available**

**N,N-bis-(1-propylimidazole)-3,4,9,10-perylene tetracarboxylic acid diimide synthesis.**

3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA, 3.923 g, 10 mmol) and \(N\)-(3-Aminopropyl)-imidazole (3.75 g, 30 mmol) were added to isobutanol (200 mL) and heated at 90 °C for 24 h with stirring under \(N_2\) atmosphere. The crude product was filtered, washed with ultrapure water and ethanol. The obtained residue was treated with 150 mL 5% aqueous NaOH solution at 90 °C for 30 min to remove the unreacted PTCDA. The mixture was filtered, washed with ultrapure water and ethanol and dried under vacuum (5.40 g, 89%). \(^1\)H NMR (CF\(_3\)COOD, 400 MHz, 25 °C), \(\delta/\text{ppm: 2.33-2.37 (t, 4H), 4.24-4.27 (t, 4H), 4.3-4.33 (t, 4H), 7.27 (s, 2H), 7.36 (s, 2H), 8.60-8.66 (m, 8H), 8.75 (s, 2H).}\) \(^1\)C NMR (CF\(_3\)COOD, 400 MHz, 25 °C), \(\delta/\text{ppm: 29.1, 38.7, 48.5, 111.1, 113.9, 119.6, 121.1, 122.7, 125.0, 133.6, 135.3, 136.6, 166.4.}\)

**N,N-bis-(1-aminopropyl-3-propylimidazol salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PDI) synthesis.** The obtained \(N,N\)-bis-(1-propylimidazole)-3,4,9,10-perylene tetracarboxylic acid diimide (3.03 g, 10 mmol) and 3-bromopropylamine hydrobromide (0.438 g, 20 mmol) were added to ethanol (100 mL), refluxed for 24 h under \(N_2\) atmosphere. After the mixture was cooled to room temperature, the precipitate was filtered and washed with ethanol. The resulting mixture was purified by re-crystallization from ethanol and dried under vacuum to give a red product (3.2 g, 93%). \(^1\)H NMR (DMSO, 400 MHz, 25 °C), \(\delta/\text{ppm: 1.23 (t, 4H), 2.26-2.30 (t, 4H), 4.11 (s, 4H), 4.33-4.37 (s, 4H), 7.75 (s, 2H), 7.86 (s, 2H), 8.34-8.36 (d, 2H), 8.61-8.63 (d, 4H), 9.19 (s, 2H).}\) \(^1\)C NMR (CF\(_3\)COOD, 400 MHz, 25 °C), \(\delta/\text{ppm: 29.21, 38.78, 48.59, 111.03, 113.85, 119.48, 120.84, 122.50, 122.74, 124.88, 126.19, 129.46, 133.24, 135.72, 135.79, 165.91.}\)
Table S1. The final pH values of the reaction mixture containing GOx and different concentrations of glucose.

<table>
<thead>
<tr>
<th>Glucose concentration (mM)</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.1</td>
<td>6.83</td>
<td>6.61</td>
<td>5.85</td>
<td>4.60</td>
<td>4.13</td>
</tr>
</tbody>
</table>

* Footnote text.
**Fig. S1** the relative fluorescence spectra change of AIA-PDI in the presence of different interferents (after incubation with GOx); the final concentrations of the relative species were: fructose (Fru) 20 mM, saccharose (Sac) 20 mM, ascorbic acid (AA) 0.1 mM, dopamine (DA) 0.1 mM, uric acid (UA) 0.1 mM and glucose (Glu) 2 mM.
Fig. S2 the stability measurement of glucose detection, the fluorescence spectra of AIA-PDI incubated in reaction mixture of GOx and glucose (a) and 20 minutes later (b).